THE TWISTED TWIN OF THE GRIGORCHUK GROUP

被引:14
作者
Bartholdi, Laurent [1 ]
Siegenthaler, Olivier [2 ]
机构
[1] Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
Self-similar group; automata group; group acting on tree; torsion group; just-infinite group; endomorphic presentation; Schur multiplier; congruence property;
D O I
10.1142/S0218196710005728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a twisted version of Grigorchuk's first group, and stress its similarities and differences to its model. In particular, we show that it admits a finite endomorphic presentation, has infinite-rank multiplier, and does not have the congruence property.
引用
收藏
页码:465 / 488
页数:24
相关论文
共 17 条
[1]  
[Anonymous], 1985, MAT ZAMETKI
[2]   Endomorphic presentations of branch groups [J].
Bartholdi, L .
JOURNAL OF ALGEBRA, 2003, 268 (02) :419-443
[3]  
BARTHOLDI L, 2009, ISR J MATH IN PRESS
[4]  
BARTHOLDI L, 2008, DUKE MATH J IN PRESS
[5]   A NILPOTENT QUOTIENT ALGORITHM FOR CERTAIN INFINITELY PRESENTED GROUPS AND ITS APPLICATIONS [J].
Bartholdi, Laurent ;
Eick, Bettina ;
Hartung, Rene .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (08) :1321-1344
[6]  
GRIGORCHUK, 1980, Funktsional. Anal. i Prilozhen., V14, P53, DOI DOI 10.1007/BF01078416
[7]  
Grigorchuk R. I., 2000, PROG MATH, P121
[8]  
GRIGORCHUK RI, 1983, DOKL AKAD NAUK SSSR+, V271, P30
[9]  
GRIGORCHUK RI, 1997, GROUPS ST ANDREWS 19, V1, P290
[10]  
Holt D., 2009, KBMAG KNUTH BENDIX M