Models of unidirectional propagation in heterogeneous excitable media

被引:2
|
作者
Alford, John G. [1 ]
机构
[1] Sam Houston State Univ, Dept Math & Stat, Huntsville, TX 77341 USA
关键词
Differential equation models; Unidirectional propagation; Excitable media; Heterogeneous parameters; WAVES; CELLS; BLOCK; EXCITATION; ARRHYTHMIAS; FAILURE; SYSTEMS; RING;
D O I
10.1016/j.amc.2010.02.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two differential equation models of excitable media (threshold and recovery kinetics) with solutions that exhibit unidirectional propagation are presented. It is shown that unidirectional propagation in heterogeneous excitable media with non-oscillatory kinetics can be initiated from homogeneous initial data. Simulations on a reaction-diffusion model with FitzHugh-Nagumo kinetics and spatially heterogeneous parameters yields a rotating wave on a one-dimensional circular spatial domain. An ordinary differential equation model with four semi-coupled excitable cells and heterogeneous parameters is analyzed to determine a critical parameter region over which unidirectional propagation may occur. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1337 / 1348
页数:12
相关论文
共 50 条
  • [1] Propagation through heterogeneous substrates in simple excitable media models
    Bub, G
    Shrier, A
    CHAOS, 2002, 12 (03) : 747 - 753
  • [2] Wave propagation in heterogeneous excitable media
    Schebesch, I.
    Engel, H.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (04):
  • [3] Wave propagation in heterogeneous excitable media
    Schebesch, I
    Engel, H
    PHYSICAL REVIEW E, 1998, 57 (04): : 3905 - 3910
  • [4] Wave propagation in heterogeneous bistable and excitable media
    Alonso, S.
    Loeber, J.
    Baer, M.
    Engel, H.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 187 (01): : 31 - 40
  • [5] Wave propagation in heterogeneous bistable and excitable media
    S. Alonso
    J. Löber
    M. Bär
    H. Engel
    The European Physical Journal Special Topics, 2010, 187 : 31 - 40
  • [6] Computational biology of propagation in excitable media models of cardiac tissue
    Holden, AV
    Biktashev, VN
    CHAOS SOLITONS & FRACTALS, 2002, 13 (08) : 1643 - 1658
  • [7] Propagation failure in excitable media
    Hagberg, A
    Meron, E
    PHYSICAL REVIEW E, 1998, 57 (01): : 299 - 303
  • [8] MODELS OF EXCITABLE MEDIA
    PROPOI, AI
    AUTOMATION AND REMOTE CONTROL, 1995, 56 (06) : 861 - 868
  • [9] Reaction-diffusion models of threshold and waveblock in heterogeneous excitable media
    Alford, John G.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (13) : 7212 - 7220
  • [10] DIFFUSION AND WAVE-PROPAGATION IN CELLULAR AUTOMATON MODELS OF EXCITABLE MEDIA
    WEIMAR, JR
    TYSON, JJ
    WATSON, LT
    PHYSICA D, 1992, 55 (3-4): : 309 - 327