The bio-inspired chaotic robot

被引:0
|
作者
Rano, Inaki [1 ]
机构
[1] Univ Ulster, Intelligent Syst Res Ctr, Coleraine BT52 1SA, Londonderry, North Ireland
关键词
NAVIGATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Chaos is an interesting phenomenon displayed by non-linear systems that has been used in robotics and found empirically on real robots' behaviour. This paper presents a formal proof that Braitenberg vehicle 2b, a bio-inspired control mechanism for unicycle robots, behaves as a mass in a potential well. This provides a powerful analogy to understand Braitenberg vehicle 2b as a mechanical system and it implies that its behaviour can be chaotic. Implementing a Braitenberg vehicle in robotics entails defining a stimulus function in the environment. Inspired by previous works and using the obtained theoretical results, this paper proposes the free area perceived by a robot as a stimulus to generate collision free continuous chaotic motion on a bounded space. In non-linear systems chaos appears when a parameter is changed in a family of dynamical systems. Similarly, our implementation on a real robot demonstrates that both, chaotic and non chaotic trajectories can be obtained depending on the stimulus function built. The behaviour is explained through the analogy with the mass in the potential well.
引用
收藏
页码:304 / 309
页数:6
相关论文
共 50 条
  • [1] A Bio-inspired Reconfigurable Robot
    Tan, Ning
    Elara, Mohan Rajesh
    Elangovan, Karthikeyan
    ADVANCES IN RECONFIGURABLE MECHANISMS AND ROBOTS II, 2016, 36 : 483 - 493
  • [2] A Bio-inspired Swimming Robot
    Chen, Zongyao
    Jia, Xinghua
    Riedel, Andrew
    Zhang, Mingjun
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 2564 - 2564
  • [3] A BIO-INSPIRED UNDERWATER ROBOT INSPIRED BY JELLYFISH
    Xiong, Xiao
    Xu, He
    Chen, Siqing
    Wang, Haihang
    You, Chaochao
    Wu, Yaxin
    PROCEEDINGS OF ASME/BATH 2023 SYMPOSIUM ON FLUID POWER AND MOTION CONTROL, FPMC2023, 2023,
  • [4] A bio-inspired apodal and modular robot
    Guimaraes, Pedro P. S.
    Nunes, Matheus M.
    Galembeck, Thais F.
    Kalejaiye, Lucas Bamidele T.
    Tenorio, Ruan P. A.
    Viana, Dianne Magalhaes
    de Barros Vidal, Flavio
    Koike, Carla M. C. E. C.
    PROCEEDINGS OF 13TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 4TH BRAZILIAN SYMPOSIUM ON ROBOTICS - LARS/SBR 2016, 2016, : 61 - 66
  • [5] Design and Control of a Bio-Inspired Robot
    Zhao, Mingguo
    Hu, Biao
    BIOMIMETICS, 2024, 9 (01)
  • [6] Bio-inspired Tensegrity Fish Robot
    Shintake, Jun
    Zappetti, Davide
    Peter, Timothee
    Ikemoto, Yusuke
    Floreano, Dario
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 2887 - 2892
  • [7] Bio-Inspired Transparent Soft Jellyfish Robot
    Wang, Yuzhe
    Zhang, Pengpeng
    Huang, Hui
    Zhu, Jian
    SOFT ROBOTICS, 2023, 10 (03) : 590 - 600
  • [8] Simulation of a Robot in Bio-Inspired Hexapod Tenebrio
    Pablo Rodriguez-Calderon, Juan
    Fernanda Ramos-Parra, Maria
    Vladimir Pena-Giraldo, Mauricio
    REVISTA DIGITAL LAMPSAKOS, 2015, (14): : 33 - 39
  • [9] Design of a Bio-Inspired Autonomous Underwater Robot
    Daniele Costa
    Giacomo Palmieri
    Matteo-Claudio Palpacelli
    Luca Panebianco
    David Scaradozzi
    Journal of Intelligent & Robotic Systems, 2018, 91 : 181 - 192
  • [10] A bio-inspired Living Lab as a robot exoskeleton
    Sevrin, Loic
    Noury, Norbert
    Abouchi, Nacer
    Jumel, Fabrice
    Massot, Bertrand
    Saraydaryan, Jacques
    2015 17TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATION & SERVICES (HEALTHCOM), 2015, : 552 - 556