Transport simulations of the pre-thermal-quench phase in ASDEX Upgrade massive gas injection experiments

被引:23
作者
Fable, E. [1 ]
Pautasso, G. [1 ]
Lehnen, M. [2 ]
Dux, R. [1 ]
Bernert, M. [1 ]
Mlynek, A. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[2] ITER Org, Route Vinon Verdon, F-13115 St Paul Les Durance, France
关键词
MGI; disruption; radiative cooling; PLASMA;
D O I
10.1088/0029-5515/56/2/026012
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The pre-thermal-quench (PTQ) phase of the massive gas injection (MGI) scenario to terminate the tokamak plasma discharge is studied by means of one-dimensional (1D) transport simulations. This phase is characterized by the cold-front penetration in the hot plasma after the gas has been released from the valves, and before the actual thermal quench takes place, with consequent plasma disruption at lower stored energy. The comparison between the simulations and the ASDEX Upgrade (AUG) experiments allows to gain insight in the observed dependencies and time scales. Despite the genuine three-dimensional structure of the problem, it is shown that the 1D simulations are already giving experimentally relevant answers, the reason for which will be discussed in detail. Influence of unknown parameters and simplifying assumptions are also discussed.
引用
收藏
页数:19
相关论文
共 21 条
[1]   Application of AXUV diode detectors at ASDEX Upgrade [J].
Bernert, M. ;
Eich, T. ;
Burckhart, A. ;
Fuchs, J. C. ;
Giannone, L. ;
Kallenbach, A. ;
McDermott, R. M. ;
Sieglin, B. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (03)
[2]   Dynamical coupling between magnetic equilibrium and transport in tokamak scenario modelling, with application to current ramps [J].
Fable, E. ;
Angioni, C. ;
Ivanov, A. A. ;
Lackner, K. ;
Maj, O. ;
Medvedev, S. Yu ;
Pautasso, G. ;
Pereverzev, G. V. ;
Treutterer, W. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (07)
[3]  
Fil A., 2014, 42 EPS C PLASM PHYS
[4]   INTEGRATED DATA ANALYSIS OF PROFILE DIAGNOSTICS AT ASDEX UPGRADE [J].
Fischer, R. ;
Fuchs, C. J. ;
Kurzan, B. ;
Suttrop, W. ;
Wolfrum, E. .
FUSION SCIENCE AND TECHNOLOGY, 2010, 58 (02) :675-684
[5]   Status of research toward the ITER disruption mitigation system [J].
Hollmann, E. M. ;
Aleynikov, P. B. ;
Fulop, T. ;
Humphreys, D. A. ;
Izzo, V. A. ;
Lehnen, M. ;
Lukash, V. E. ;
Papp, G. ;
Pautasso, G. ;
Saint-Laurent, F. ;
Snipes, J. A. .
PHYSICS OF PLASMAS, 2015, 22 (02)
[6]   Simulation of main chamber wall temperature rise resulting from massive neon gas injection shutdown of ITER [J].
Hollmann, E. M. ;
Humphreys, D. A. ;
Parks, P. B. .
NUCLEAR FUSION, 2012, 52 (03)
[7]  
Ivanov A. A., 2005, 32 EPS C PLASM PHYS, V29
[8]   Impurity mixing and radiation asymmetry in massive gas injection simulations of DIII-D [J].
Izzo, V. A. .
PHYSICS OF PLASMAS, 2013, 20 (05)
[9]  
Konovalov S., 2014, 25 IAEA INT C FUS EN
[10]   Disruptions in ITER and strategies for their control and mitigation [J].
Lehnen, M. ;
Aleynikova, K. ;
Aleynikov, P. B. ;
Campbell, D. J. ;
Drewelow, P. ;
Eidietis, N. W. ;
Gasparyan, Yu. ;
Granetz, R. S. ;
Gribov, Y. ;
Hartmann, N. ;
Hollmann, E. M. ;
Izzo, V. A. ;
Jachmich, S. ;
Kim, S. -H. ;
Kocan, M. ;
Koslowski, H. R. ;
Kovalenko, D. ;
Kruezi, U. ;
Loarte, A. ;
Maruyama, S. ;
Matthews, G. F. ;
Parks, P. B. ;
Pautasso, G. ;
Pitts, R. A. ;
Reux, C. ;
Riccardo, V. ;
Roccella, R. ;
Snipes, J. A. ;
Thornton, A. J. ;
de Vries, P. C. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :39-48