HIGH FREQUENCY SOLUTIONS OF THE NONLINEAR SCHRODINGER EQUATION ON SURFACES

被引:0
作者
Burq, Nicolas [1 ,2 ]
Gerard, Patrick [1 ]
Tzvetkov, Nikolay [3 ]
机构
[1] Univ Paris 11, Lab Math Orsay, CNRS, UMR 8628, F-91405 Orsay, France
[2] Inst Univ France, F-91405 Orsay, France
[3] Univ Lille 1, Lab Paul Painleve, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
关键词
ILL-POSEDNESS; INSTABILITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the problem of describing solutions of the nonlinear Schrodinger equation on a compact surface in the high frequency regime. In this context, we introduce a nonnegative threshold, depending on the geometry of the surface, which can be seen as a measurement of the nonlinear character of the equation, and we compute this number for the torus and for the sphere, as a consequence of earlier arguments. The last part is devoted to the study, on the sphere, of the critical regime associated to this threshold. We prove that the effective dynamics are described by a new evolution equation, the Resonant Hermite-Schrodinger equation.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 22 条
  • [1] The nonlinear Schrodinger equation with a strongly anisotropic harmonic potential
    Ben Abdallah, N
    Méhats, F
    Schmeiser, C
    Weishäupl, RM
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) : 189 - 199
  • [2] On the ill-posedness of the IVP for the generalized Korteweg-DeVries and nonlinear Schrodinger equations
    Birnir, B
    Kenig, CE
    Ponce, G
    Svanstedt, N
    Vega, L
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 : 551 - 559
  • [3] Bourgain J., 1993, Geom. Funct. Anal., V3, P107, DOI 10.1007/BF01896020
  • [4] Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
  • [5] Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds
    Burq, N
    Gérard, P
    Tzvetkov, N
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (03) : 569 - 605
  • [6] Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrodinger equations
    Burq, N
    Gérard, P
    Tzvetkov, N
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2005, 38 (02): : 255 - 301
  • [7] Bilinear eigenfunction estimates and the nonlinear Schrodinger equation on surfaces
    Burq, N
    Gérard, P
    Tzvetkov, N
    [J]. INVENTIONES MATHEMATICAE, 2005, 159 (01) : 187 - 223
  • [8] Burq N, 2002, MATH RES LETT, V9, P323
  • [9] Burq N., 2004, PHASE SPACE ANAL PAR, VI, P21
  • [10] Stabilization and control for the nonlinear Schrodinger equation on a compact surface
    Dehman, B.
    Gerard, P.
    Lebeau, G.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (04) : 729 - 749