Global Existence to the Vlasov-Poisson System and Propagation of Moments Without Assumption of Finite Kinetic Energy

被引:29
作者
Chen, Zili [1 ]
Zhang, Xianwen [2 ]
机构
[1] Nanchang Univ, Sch Sci, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
CLASSICAL-SOLUTIONS; LARGE VELOCITIES; SPACE MOMENTS; TIME DECAY; REGULARITY; EQUATIONS;
D O I
10.1007/s00220-016-2616-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider classical as well as weak solutions to the three dimensional Vlasov-Poisson system. Without assuming finiteness of kinetic energy, we prove global existence of classical solutions by assuming the initial datum is smooth enough and has a compact velocity-spatial support, which will be specified in Theorem 1.1. We also establish some propagation results for low moments of weak solutions.
引用
收藏
页码:851 / 879
页数:29
相关论文
共 37 条
[1]  
[Anonymous], 1996, The Cauchy Problems in Kinetic Theory
[2]  
Arsenev A A., 1975, USSR Comput. Math. Math. Phys, V15, P131, DOI [10.1016/0041-5553(75)90141-X, DOI 10.1016/0041-5553(75)90141-X]
[3]  
BARDOS C, 1985, ANN I H POINCARE-AN, V2, P101
[4]  
BATT J, 1991, CR ACAD SCI I-MATH, V313, P411
[5]   GLOBAL SYMMETRIC SOLUTIONS OF INITIAL VALUE-PROBLEM OF STELLAR DYNAMICS [J].
BATT, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 25 (03) :342-364
[6]   ON THE PLASMA-CHARGE MODEL [J].
Caprino, Silvia ;
Marchioro, Carlo .
KINETIC AND RELATED MODELS, 2010, 3 (02) :241-254
[7]   Propagation of space moments in the Vlasov-Poisson Equation and further results [J].
Castella, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (04) :503-533
[8]  
Chen ZL, 2014, COMMUN MATH SCI, V12, P279
[9]   Polynomial propagation of moments and global existence for a Vlasov-Poisson system with a point charge [J].
Desvillettes, Laurent ;
Miot, Evelyne ;
Saffirio, Chiara .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (02) :373-400
[10]   Regularity and propagation of moments in some nonlinear Vlasov systems [J].
Gasser, I ;
Jabin, PE ;
Perthame, B .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 :1259-1273