Pseudocapacitive Anode Materials toward High-Power Sodium-Ion Capacitors

被引:47
作者
Chang, Xiaoqing [1 ]
Huang, Tingyi [1 ]
Yu, Jiayu [1 ]
Li, Junbin [1 ]
Wang, Jian [1 ]
Wei, Qiulong [1 ]
机构
[1] Xiamen Univ, Coll Mat, Dept Mat Sci & Engn, Fujian Key Lab Mat Genome, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion capacitors; pseudocapacitance; anode materials; hybrid capacitors; high power device; ELECTROCHEMICAL ENERGY-STORAGE; INTERCALATION PSEUDOCAPACITANCE; NA-ION; LI-ION; CONVERSION REACTIONS; VANADIUM NITRIDE; LITHIUM; BATTERIES; TRANSITION; MOS2;
D O I
10.1002/batt.202100043
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Sodium-ion storage technology holds great promise for large-scale, sustainable, and low-cost green energy storage systems. Overcoming the main limitations of sluggish Na+ diffusion kinetics and achieving high-power sodium-ion storage devices is critical but full of challenges. Recently, emerging pseudocapacitive sodium-ion storage materials are attracting attention due to their superior rate capability and other comprehensive electrochemical performance. Herein, this review covers the charge storage mechanism, features, and performance of pseudocapacitive sodium-ion storage anode materials and the assembled sodium-ion capacitors. The research processes of state-of-the-art pseudocapacitive sodium-ion storage anode materials, which display remarkable rate performance, high specific capacity and cycling stability, are introduced and discussed. Using the pseudocapacitive anode materials, advanced sodium-ion capacitors deliver high energy density at high power density. In the end, the outlooks of pseudocapacitive sodium-ion storage materials toward future high-power sodium-ion capacitors are briefly proposed.
引用
收藏
页码:1567 / 1587
页数:21
相关论文
共 118 条
[1]   How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? [J].
Abraham, K. M. .
ACS ENERGY LETTERS, 2020, 5 (11) :3544-3547
[2]   Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
CHEMICAL REVIEWS, 2014, 114 (23) :11619-11635
[3]   Nonaqueous Lithium-Ion Capacitors with High Energy Densities using Trigol-Reduced Graphene Oxide Nanosheets as Cathode-Active Material [J].
Aravindan, Vanchiappan ;
Mhamane, Dattakumar ;
Ling, Wong Chui ;
Ogale, Satishchandra ;
Madhavi, Srinivasan .
CHEMSUSCHEM, 2013, 6 (12) :2240-2244
[4]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[5]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/nmat3601, 10.1038/NMAT3601]
[6]   Strain-engineered BlueP-MoS2 van der Waals heterostructure with improved lithiation/sodiation for LIBs and SIBs [J].
Barik, Gayatree ;
Pal, Sourav .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (03) :1701-1714
[7]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[8]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[9]   Electrolyte design for Li metal-free Li batteries [J].
Chen, Ji ;
Li, Qin ;
Pollard, Travis P. ;
Fan, Xiulin ;
Borodin, Oleg ;
Wang, Chunsheng .
MATERIALS TODAY, 2020, 39 (39) :118-126
[10]   Achieving high energy density and high power density with pseudocapacitive materials [J].
Choi, Christopher ;
Ashby, David S. ;
Butts, Danielle M. ;
DeBlock, Ryan H. ;
Wei, Qiulong ;
Lau, Jonathan ;
Dunn, Bruce .
NATURE REVIEWS MATERIALS, 2020, 5 (01) :5-19