Application of a Projection Method for Simulating Flow of a Shear-Thinning Fluid

被引:7
|
作者
Jabbari, Masoud [1 ]
McDonough, James [2 ,3 ]
Mitsoulis, Evan [4 ]
Hattel, Jesper Henri [5 ]
机构
[1] Univ Manchester, Sch Mech Aerosp & Civil Engn, Manchester M13 9PL, Lancs, England
[2] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA
[3] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[4] Natl Tech Univ Athens, Sch Min Engn & Met, Zografos 15780, Greece
[5] Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark
关键词
lid-driven cavity; projection method; shear-thinning; aspect ratio; Re numbers; LID-DRIVEN-CAVITY; NUMERICAL-SIMULATION; INCOMPRESSIBLE-FLOW; MIXED-CONVECTION; NEWTONIAN FLUID; ELASTIC LIQUIDS; CREEPING MOTION; MODEL; CESSATION; SPHERE;
D O I
10.3390/fluids4030124
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, a first-order projection method is used to solve the Navier-Stokes equations numerically for a time-dependent incompressible fluid inside a three-dimensional (3-D) lid-driven cavity. The flow structure in a cavity of aspect ratio delta=1 and Reynolds numbers (100,400,1000) is compared with existing results to validate the code. We then apply the developed code to flow of a generalised Newtonian fluid with the well-known Ostwald-de Waele power-law model. Results show that, by decreasing n (further deviation from Newtonian behaviour) from 1 to 0.9, the peak values of the velocity decrease while the centre of the main vortex moves towards the upper right corner of the cavity. However, for n=0.5, the behaviour is reversed and the main vortex shifts back towards the centre of the cavity. We moreover demonstrate that, for the deeper cavities, delta=2,4, as the shear-thinning parameter n decreased the top-main vortex expands towards the bottom surface, and correspondingly the secondary flow becomes less pronounced in the plane perpendicular to the cavity lid.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Flow of shear-thinning liquids in channels with superhydrophobic surfaces
    Ray, Prasun K.
    Bouvier, Damien
    Papageorgiou, Demetrios T.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2023, 319
  • [22] Numerical simulation of a shear-thinning fluid through packed spheres
    Liu, Hai Long
    Moon, Jong Sin
    Hwang, Wook Ryol
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2012, 24 (04) : 297 - 306
  • [23] Simulation of the Three-Dimensional Flow of Blood Using a Shear-Thinning Viscoelastic Fluid Model
    Bodnar, T.
    Rajagopal, K. R.
    Sequeira, A.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2011, 6 (05) : 1 - 24
  • [24] The effect of particle geometry on squirming through a shear-thinning fluid
    van Gogh, Brandon
    Demir, Ebru
    Palaniappan, D.
    Pak, On Shun
    JOURNAL OF FLUID MECHANICS, 2022, 938
  • [25] THE SHEAR-THINNING PHENOMENON OF BAGASSE KRAFT BLACK LIQUOR FLUID
    Rendang Yang Kefu Chen Jun Xu Heng Zhang Qifeng Chen Jin Wang State Key Laboratory of Pulp Paper Engineering Guangzhou China
    天津科技大学学报, 2004, (S1) : 165 - 169
  • [26] THE FLOW PAST A SPHERE IN A CYLINDRICAL TUBE - EFFECTS OF INERTIA, SHEAR-THINNING AND ELASTICITY
    ZHENG, R
    PHANTHIEN, N
    TANNER, RI
    RHEOLOGICA ACTA, 1991, 30 (06) : 499 - 510
  • [27] An experimental investigation of negative wakes behind spheres settling in a shear-thinning viscoelastic fluid
    Arigo, MT
    McKinley, GH
    RHEOLOGICA ACTA, 1998, 37 (04) : 307 - 327
  • [28] Analysis of Interaction and Flow Pattern of Multiple Bubbles in Shear-Thinning Viscoelastic Fluids
    He, Hongbin
    Liu, Zhuang
    Ji, Jingbo
    Li, Shaobai
    ENERGIES, 2023, 16 (14)
  • [29] Leukocytes dynamics in microcirculation under shear-thinning blood flow
    Sequeira, A.
    Artoli, A. M.
    Silva-Herdade, A. S.
    Saldanha, C.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (05) : 1035 - 1044
  • [30] Wall-induced translation of a rotating particle in a shear-thinning fluid
    Chen, Ye
    Demir, Ebru
    Gao, Wei
    Young, Y-N
    Pak, On Shun
    JOURNAL OF FLUID MECHANICS, 2021, 927