Characterization of Li2MnSiO4 and Li2eSiO4 cathode materials synthesized via a citric acid assisted sol-gel method

被引:126
作者
Deng, C. [1 ]
Zhang, S. [2 ]
Fu, B. L. [2 ]
Yang, S. Y. [2 ]
Ma, L. [1 ]
机构
[1] Harbin Normal Univ, Prov Key Lab Nanofunctionalized Mat & Excitated S, Coll Chem & Chem Engn, Harbin 150025, Heilongjiang, Peoples R China
[2] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Orthosilicate; Cathode material; Lithium-ion battery; Sol-gel; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; LI2FESIO4; LIFEPO4; COMPOSITES; ELECTRODE; IMPACT;
D O I
10.1016/j.matchemphys.2009.11.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two members of the family of orthosilicate, Li2FeSiO4 and Li2MnSiO4, are prepared by a citric acid assisted sol-gel method. As cathode materials for lithium-ion batteries, their structural, morphological and electrochemical characteristics are investigated and compared. Both cathode materials have nanoparticles with similar lattice parameters. Li2FeSiO4 has a maximum discharge capacity of 152.8 m A hg(-1), and 98.3% of its maximum discharge capacity is retained after fifty cycles. However, the discharge capacity of Li2MnSiO4 fades rapidly and stabilized at about 70 mAh g(-1) after twenty cycles. The electrochemical impedance and differential capacity analysis indicate that Li2MnSiO4 has larger charge transfer impedance and higher electrochemical irreversibility than Li2FeSiO4, which makes its electrochemical behaviors seriously deteriorate and leads to difference between two silicate materials. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:14 / 17
页数:4
相关论文
共 20 条
[1]  
Armand M., 2000, US Patent, Patent No. 6085015
[2]   Li2MSiO4 (M = Fe and/or Mn) cathode materials [J].
Dominko, R. .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :462-468
[3]   Impact of synthesis conditions on the structure and performance of Li2FeSiO4 [J].
Dominko, R. ;
Conte, D. E. ;
Hanzel, D. ;
Gaberscek, M. ;
Jamnik, J. .
JOURNAL OF POWER SOURCES, 2008, 178 (02) :842-847
[4]   Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Meden, A ;
Remskar, M ;
Jamnik, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) :217-222
[5]   Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Remskar, M ;
Hanzel, D ;
Pejovnik, S ;
Jamnik, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) :A607-A610
[6]   Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process [J].
Gong, Z. L. ;
Li, Y. X. ;
He, G. N. ;
Li, J. ;
Yang, Y. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (05) :A60-A63
[7]   Performance of polyaniline/multi-walled carbon nanotubes composites as cathode for rechargeable lithium batteries [J].
He, Ben-Lin ;
Dong, Bin ;
Wang, Wei ;
Li, Hu-Lin .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 114 (01) :371-375
[8]   Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J].
Huang, H ;
Yin, SC ;
Nazar, LF .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A170-A172
[9]   Beyond one-electron reaction in Li cathode materials:: Designing Li2MnxFe1-xSiO4 [J].
Kokalj, Anton ;
Dominko, Robert ;
Mali, Gregor ;
Meden, Anton ;
Gaberscek, Miran ;
Jamnik, Janez .
CHEMISTRY OF MATERIALS, 2007, 19 (15) :3633-3640
[10]   Preparation and electrochemical performance of highly dispersed Sn-Zn-O composite system [J].
Liang, Ying .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 115 (2-3) :735-739