The Bohr inequality for ordinary Dirichlet series

被引:43
作者
Balasubramanian, R. [1 ]
Calado, B.
Queffelec, H.
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
[2] Univ Lille 1, UFR Math, F-59655 Villeneuve Dascq, France
[3] Univ Paris Sud XI, Ctr Orsay, Math Lab, F-91405 Orsay, France
关键词
Dirichlet series; Bohr radius; Banach spaces of Dirichlet series; hypercontractivity;
D O I
10.4064/sm175-3-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend to the setting of Dirichlet series previous results of H. Bohr for Taylor series in one variable, themselves generalized by V. I. Paulsen, G. Popescu and D. Singh or extended to several variables by L. Aizenberg, R. P. Boas and D. Khavinson. We show in particular that, if f (s) = Sigma(infinity)(n=1) an n(-2) with \\f\\(infinity) := sup(Rs.0) \f (s)\ < infinity, then Sigma(infinity)(n=1) \a(n)\n(-2) <= \\f\\infinity and even slightly better, and Sigma(infinity)(n=1) \a(n)\n(-1\2) <= C\\f\\(infinity), C being an absolute constant.
引用
收藏
页码:285 / 304
页数:20
相关论文
共 29 条
[1]   Multidimensional analogues of Bohr's theorem on power series [J].
Aizenberg, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1147-1155
[2]   On the Bohr radius for two classes of holomorphic functions [J].
Aizenberg, L ;
Vidras, A .
SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (04) :606-617
[3]  
AIZENBERG L, 2002, IZV VYSSH UCHEBN ZAV, P3
[4]  
[Anonymous], 1995, INTRO THEORIE ANAL P
[5]   Hardy spaces of Dirichlet series and their composition operators [J].
Bayart, F .
MONATSHEFTE FUR MATHEMATIK, 2002, 136 (03) :203-236
[6]  
BAYART F, 2002, THESIS U SCI TECH LI
[7]  
Beneteau C, 2004, CONTEMP MATH, V364, P5
[8]  
Beneteau C., 2004, Comput. Methods Funct. Theory, V4, P1, DOI DOI 10.1007/BF03321051
[9]  
BLEI RC, 1979, ANN I FOURIER GRENOB, V29, P79
[10]   Bohr's power series theorem in several variables [J].
Boas, HP ;
Khavinson, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (10) :2975-2979