Large-Scale Flexible and Highly Conductive Carbon Transparent Electrodes via Roll-to-Roll Process and Its High Performance Lab-Scale Indium Tin Oxide-Free Polymer Solar Cells

被引:79
作者
Hu, Xiaotian [1 ]
Chen, Lie [1 ,2 ]
Zhang, Yong [1 ]
Hu, Qiao [3 ]
Yang, Junliang [3 ]
Chen, Yiwang [1 ,2 ]
机构
[1] Nanchang Univ, Inst Polymers, Sch Mat Sci & Engn, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Coll Chem, Jiangxi Prov Key Lab New Energy Chem, Nanchang 330031, Peoples R China
[3] Cent S Univ, Inst Super Microstruct & Ultrafast Proc Adv Mat, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOWIRE NETWORK ELECTRODES; OPEN-CIRCUIT VOLTAGE; PEDOT-PSS; SULFONATE) FILM; GRAPHENE OXIDE; WORK FUNCTION; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); NANOTUBE; RAMAN; ENHANCEMENT;
D O I
10.1021/cm5033942
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A scalable and highly conductive PEDOT:PSS:CNTs transparent electrode (TE) is demonstrated for high performance optoelectronics. The aligned and uniform dispersion of electron conduction favored CNTs in the PEDOT:PSS matrix can achieve the rearrangement of the PEDOT chains with more expended conformation via the pi pi interaction between CNTs and PEDOT. As a result, PEDOT:PSS:CNTs electrode presents a high conductivity of 3264.27 S cm(1) with a high transmittance over 85%, and ITO-free PSCs based on PEDOT:PSS:CNTs electrode achieves a PCE of 7.47% with high stability. Furthermore, a large-scale flexible electrode was obtained by a roll-to-roll technique, which demonstrates an excellent property with a sheet resistance of 17 O sq(1) and 80.7% optical transmittance. Combining the flexible and conductive PEDOT:PSS:CNTs film with the scalable roll-to-roll process, we anticipate that the commercial production of a large-scale transparent electrode, replacing ITO, will be realized in the near future.
引用
收藏
页码:6293 / 6302
页数:10
相关论文
共 69 条
[1]   Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells [J].
Alemu, Desalegn ;
Wei, Hung-Yu ;
Ho, Kuo-Chuan ;
Chu, Chih-Wei .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9662-9671
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P374, DOI 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO
[4]  
2-W
[5]   Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy [J].
Chang, Chih-Yu ;
Zuo, Lijian ;
Yip, Hin-Lap ;
Li, Chang-Zhi ;
Li, Yongxi ;
Hsu, Chain-Shu ;
Cheng, Yen-Ju ;
Chen, Hongzheng ;
Jen, Alex K-Y. .
ADVANCED ENERGY MATERIALS, 2014, 4 (07)
[6]   Solution-Processed (Graphene Oxide)-(d0 Transition Metal Oxide) Composite Anodic Buffer Layers toward High-Performance and Durable Inverted Polymer Solar Cells [J].
Chao, Yi-Hsiang ;
Wu, Jhong-Sian ;
Wu, Chen-En ;
Jheng, Jyun-Fong ;
Wang, Chien-Lung ;
Hsu, Chain-Shu .
ADVANCED ENERGY MATERIALS, 2013, 3 (10) :1279-1285
[7]   A commodity no more [J].
Chipman, Andrea .
NATURE, 2007, 449 (7159) :131-131
[8]   Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study [J].
Crispin, X ;
Marciniak, S ;
Osikowicz, W ;
Zotti, G ;
Van der Gon, AWD ;
Louwet, F ;
Fahlman, M ;
Groenendaal, L ;
De Schryver, F ;
Salaneck, WR .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2003, 41 (21) :2561-2583
[9]   Carbon Nanotubes: Present and Future Commercial Applications [J].
De Volder, Michael F. L. ;
Tawfick, Sameh H. ;
Baughman, Ray H. ;
Hart, A. John .
SCIENCE, 2013, 339 (6119) :535-539
[10]  
Dou LT, 2012, NAT PHOTONICS, V6, P180, DOI [10.1038/nphoton.2011.356, 10.1038/NPHOTON.2011.356]