The Webster scalar curvature flow on CR sphere. Part I

被引:18
作者
Ho, Pak Tung [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
基金
新加坡国家研究基金会;
关键词
Webster scalar curvature; CR sphere; CR Yamabe problem; YAMABE FLOW; CONFORMAL DEFORMATION; PERTURBATION RESULT; CONVERGENCE; MANIFOLDS; EXISTENCE; CONSTANTS; METRICS; THEOREM;
D O I
10.1016/j.aim.2014.10.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the first of two papers, in which we prove some properties of the Webster scalar curvature flow. More precisely, we establish the long-time existence, L-p convergence and the blow-up analysis for the solution of the flow. As a by-product, we prove the convergence of the CR Yamabe flow on the CR sphere. The results in this paper will be used to prove a result of prescribing Webster scalar curvature on the CR sphere, which is the main result of the second paper. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:758 / 835
页数:78
相关论文
共 46 条
[31]  
JERISON D, 1987, J DIFFER GEOM, V25, P167
[32]  
Jerison David, 1988, J. Amer. Math. Soc., V1, P1, DOI [10.2307/1990964, DOI 10.2307/1990964]
[33]   EXISTENCE AND CONFORMAL DEFORMATION OF METRICS WITH PRESCRIBED GAUSSIAN AND SCALAR CURVATURES [J].
KAZDAN, JL ;
WARNER, FW .
ANNALS OF MATHEMATICS, 1975, 101 (02) :317-331
[34]   CURVATURE FUNCTIONS FOR COMPACT 2-MANIFOLDS [J].
KAZDAN, JL ;
WARNER, FW .
ANNALS OF MATHEMATICS, 1974, 99 (01) :14-47
[35]   THE YAMABE PROBLEM [J].
LEE, JM ;
PARKER, TH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) :37-91
[36]   A perturbation result for the Webster scalar curvature problem on the CR sphere [J].
Malchiodi, A ;
Uguzzoni, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (10) :983-997
[37]   Multiplicity results for the prescribed Webster scalar curvature on the three CR sphere under "flatness condition" [J].
Riahi, Moncef ;
Gamara, Najoua .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (01) :72-95
[38]   The Webster scalar curvature revisited: the case of the three dimensional CR sphere [J].
Salem, Eljazi ;
Gamara, Najoua .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 42 (1-2) :107-136
[39]   FUNDAMENTAL-SOLUTIONS AND GEOMETRY OF THE SUM OF SQUARES OF VECTOR-FIELDS [J].
SANCHEZCALLE, A .
INVENTIONES MATHEMATICAE, 1984, 78 (01) :143-160
[40]  
SCHOEN R, 1984, J DIFFER GEOM, V20, P479