The Webster scalar curvature flow on CR sphere. Part I

被引:18
作者
Ho, Pak Tung [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
基金
新加坡国家研究基金会;
关键词
Webster scalar curvature; CR sphere; CR Yamabe problem; YAMABE FLOW; CONFORMAL DEFORMATION; PERTURBATION RESULT; CONVERGENCE; MANIFOLDS; EXISTENCE; CONSTANTS; METRICS; THEOREM;
D O I
10.1016/j.aim.2014.10.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the first of two papers, in which we prove some properties of the Webster scalar curvature flow. More precisely, we establish the long-time existence, L-p convergence and the blow-up analysis for the solution of the flow. As a by-product, we prove the convergence of the CR Yamabe flow on the CR sphere. The results in this paper will be used to prove a result of prescribing Webster scalar curvature on the CR sphere, which is the main result of the second paper. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:758 / 835
页数:78
相关论文
共 46 条
[21]   Sharp constants in several inequalities on the Heisenberg group [J].
Frank, Rupert L. ;
Lieb, Elliott H. .
ANNALS OF MATHEMATICS, 2012, 176 (01) :349-381
[22]  
Gamara N, 2002, ADV NONLINEAR STUD, V2, P193
[23]   CR Yamabe conjecture - The conformally flat case [J].
Gamara, N ;
Yacoub, R .
PACIFIC JOURNAL OF MATHEMATICS, 2001, 201 (01) :121-175
[24]  
Gamara N., 2001, J EUR MATH SOC, V3, P105
[25]  
Hamilton R.S., 1988, Mathematics and General Relativity, V71, P237, DOI [DOI 10.1090/CONM/071/954419, DOI 10.1090/CONM/071]
[26]  
Ho P.T., WEBSTER SCALAR CUR 1
[27]   RESULTS RELATED TO PRESCRIBING PSEUDO-HERMITIAN SCALAR CURVATURE [J].
Ho, Pak Tung .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (03)
[28]   Prescribed Curvature Flow on Surfaces [J].
Ho, Pak Tung .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (05) :1517-1541
[29]   THE LONG-TIME EXISTENCE AND CONVERGENCE OF THE CR YAMABE FLOW [J].
Ho, Pak Tung .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (02)
[30]  
JERISON D, 1989, J DIFFER GEOM, V29, P303