The Webster scalar curvature flow on CR sphere. Part I

被引:18
作者
Ho, Pak Tung [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
基金
新加坡国家研究基金会;
关键词
Webster scalar curvature; CR sphere; CR Yamabe problem; YAMABE FLOW; CONFORMAL DEFORMATION; PERTURBATION RESULT; CONVERGENCE; MANIFOLDS; EXISTENCE; CONSTANTS; METRICS; THEOREM;
D O I
10.1016/j.aim.2014.10.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the first of two papers, in which we prove some properties of the Webster scalar curvature flow. More precisely, we establish the long-time existence, L-p convergence and the blow-up analysis for the solution of the flow. As a by-product, we prove the convergence of the CR Yamabe flow on the CR sphere. The results in this paper will be used to prove a result of prescribing Webster scalar curvature on the CR sphere, which is the main result of the second paper. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:758 / 835
页数:78
相关论文
共 46 条
[1]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[3]  
Aubin T., 1998, SOME NONLINEAR PROBL, pxviii+395
[4]   Schauder estimates for parabolic nondivergence operators of Hormander type [J].
Bramanti, Marco ;
Brandolini, Luca .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (01) :177-245
[5]  
Brendle S, 2005, J DIFFER GEOM, V69, P217
[6]   Convergence of the Yamabe flow in dimension 6 and higher [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2007, 170 (03) :541-576
[7]   The Harnack estimate for the Yamabe flow on CR manifolds of dimension 3 [J].
Chang, SC ;
Cheng, JH .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (02) :111-121
[8]  
Chang SC, 2010, T AM MATH SOC, V362, P1681
[9]   A PERTURBATION RESULT IN PRESCRIBING SCALAR CURVATURE ON SN [J].
CHANG, SYA ;
YANG, PC .
DUKE MATHEMATICAL JOURNAL, 1991, 64 (01) :27-69
[10]   THE SCALAR CURVATURE EQUATION ON 2-SPHERE AND 3-SPHERE [J].
CHANG, SYA ;
GURSKY, MJ ;
YANG, PC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :205-229