Critical growth problems for polyharmonic operators

被引:32
作者
Gazzola, F [1 ]
机构
[1] Dipartimento Sci TA, I-15100 Alessandria, Italy
关键词
D O I
10.1017/S0308210500012774
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that critical growth problems for polyharmonic operators admit nontrivial solutions for a wide class of lower-order perturbations of the critical term. The results highlight the phenomenon of bifurcation of the critical dimensions discovered by Pucci and Serrin; moreover, we show that another bifurcation seems to appear for 'nonresonant' dimensions.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 25 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1996, ADV DIFF EQU
[3]  
ARIOLI G, IN PRESS NODEA NONLI
[4]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]   AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
CAPOZZI, A ;
FORTUNATO, D ;
PALMIERI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06) :463-470
[7]  
CERAMI G, 1984, ANN I H POINCARE-AN, V1, P341
[8]   SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENT IN DIMENSION-3 [J].
COMTE, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (05) :445-455
[9]   CRITICAL EXPONENTS, CRITICAL DIMENSIONS AND THE BIHARMONIC OPERATOR [J].
EDMUNDS, DE ;
FORTUNATO, D ;
JANNELLI, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (03) :269-289
[10]   INFINITELY MANY SOLUTIONS FOR SOME NONLINEAR ELLIPTIC PROBLEMS IN SYMMETRICAL DOMAINS [J].
FORTUNATO, D ;
JANNELLI, E .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 105 :205-213