Global convergence of proximal iteratively reweighted algorithm

被引:16
|
作者
Sun, Tao [1 ]
Jiang, Hao [2 ]
Cheng, Lizhi [1 ,3 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Coll Comp, Changsha 410073, Hunan, Peoples R China
[3] Natl Univ Def Technol, State Key Lab High Performance Computat, Changsha 410073, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Proximal iteratively reweighted algorithm; Kurdyka-Lojasiewicz function; Convergence analysis; Parallel splitting; Alternating updating; NONCONVEX; OPTIMIZATION; MINIMIZATION;
D O I
10.1007/s10898-017-0507-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we investigate the convergence of the proximal iteratively reweighted algorithm for a class of nonconvex and nonsmooth problems. Such problems actually include numerous models in the area of signal processing and machine learning research. Two extensions of the algorithm are also studied. We provide a unified scheme for these three algorithms. With the Kurdyka-Lojasiewicz property, we prove that the unified algorithm globally converges to a critical point of the objective function.
引用
收藏
页码:815 / 826
页数:12
相关论文
共 50 条
  • [21] NonConvex Iteratively Reweighted Least Square Optimization in Compressive Sensing
    Chakraborty, Madhuparna
    Barik, Alaka
    Nath, Ravinder
    Dutta, Victor
    MATERIAL AND MANUFACTURING TECHNOLOGY II, PTS 1 AND 2, 2012, 341-342 : 629 - +
  • [22] Convergence rate analysis of an extrapolated proximal difference-of-convex algorithm
    Gao, Lejia
    Wen, Bo
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 1403 - 1429
  • [23] Convergence of the reweighted ℓ1 minimization algorithm for ℓ2–ℓp minimization
    Xiaojun Chen
    Weijun Zhou
    Computational Optimization and Applications, 2014, 59 : 47 - 61
  • [24] Non-Lipschitz Variational Models and their Iteratively Reweighted Least Squares Algorithms for Image Denoising on Surfaces
    Liu, Yuan
    Wu, Chunlin
    Zeng, Chao
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (02): : 1255 - 1283
  • [25] Convergence of proximal gradient algorithm in the presence of adjoint mismatch *
    Chouzenoux, Emilie
    Pesquet, Jean-Christophe
    Riddell, Cyril
    Savanier, Marion
    Trousset, Yves
    INVERSE PROBLEMS, 2021, 37 (06)
  • [26] On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision
    Ochs, Peter
    Dosovitskiy, Alexey
    Brox, Thomas
    Pock, Thomas
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (01): : 331 - 372
  • [27] Convergence analysis of a proximal point algorithm for minimizing differences of functions
    Nguyen Thai An
    Nguyen Mau Nam
    OPTIMIZATION, 2017, 66 (01) : 129 - 147
  • [28] CONVERGENCE OF A PROXIMAL-LIKE ALGORITHM IN THE PRESENCE OF COMPUTATIONAL ERRORS
    Zaslavski, Alexander J.
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (06): : 2307 - 2328
  • [29] Fast Iteratively Reweighted Least Squares Minimization for Sparse Recovery
    Liu, Kaihui
    Wan, Liangtian
    Wang, Feiyu
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [30] Deep Unfolding of Iteratively Reweighted ADMM for Wireless RF Sensing
    Thanthrige, Udaya S. K. P. Miriya
    Jung, Peter
    Sezgin, Aydin
    SENSORS, 2022, 22 (08)