Global convergence of proximal iteratively reweighted algorithm

被引:16
|
作者
Sun, Tao [1 ]
Jiang, Hao [2 ]
Cheng, Lizhi [1 ,3 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Coll Comp, Changsha 410073, Hunan, Peoples R China
[3] Natl Univ Def Technol, State Key Lab High Performance Computat, Changsha 410073, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Proximal iteratively reweighted algorithm; Kurdyka-Lojasiewicz function; Convergence analysis; Parallel splitting; Alternating updating; NONCONVEX; OPTIMIZATION; MINIMIZATION;
D O I
10.1007/s10898-017-0507-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we investigate the convergence of the proximal iteratively reweighted algorithm for a class of nonconvex and nonsmooth problems. Such problems actually include numerous models in the area of signal processing and machine learning research. Two extensions of the algorithm are also studied. We provide a unified scheme for these three algorithms. With the Kurdyka-Lojasiewicz property, we prove that the unified algorithm globally converges to a critical point of the objective function.
引用
收藏
页码:815 / 826
页数:12
相关论文
共 50 条
  • [1] Global convergence of proximal iteratively reweighted algorithm
    Tao Sun
    Hao Jiang
    Lizhi Cheng
    Journal of Global Optimization, 2017, 68 : 815 - 826
  • [2] Global convergence of block Bregman proximal iteratively reweighted algorithm with extrapolation
    Zhang, Jie
    Yang, Xinmin
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, : 381 - 410
  • [3] Convergence of Proximal Iteratively Reweighted Nuclear Norm Algorithm for Image Processing
    Sun, Tao
    Jiang, Hao
    Cheng, Lizhi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (12) : 5632 - 5644
  • [4] Convergence rate analysis of proximal iteratively reweighted l1 methods for lp regularization problems
    Wang, Hao
    Zeng, Hao
    Wang, Jiashan
    OPTIMIZATION LETTERS, 2023, 17 (02) : 413 - 435
  • [5] Iteratively Reweighted Least Squares for Basis Pursuit with Global Linear Convergence Rate
    Kuemmerle, Christian
    Verdun, Claudio Mayrink
    Stoeger, Dominik
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [6] An extrapolated proximal iteratively reweighted method for nonconvex composite optimization problems
    Ge, Zhili
    Wu, Zhongming
    Zhang, Xin
    Ni, Qin
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 86 (04) : 821 - 844
  • [8] Block Iteratively Reweighted Algorithms for Robust Symmetric Nonnegative Matrix Factorization
    He, Zhen-Qing
    Yuan, Xiaojun
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (10) : 1510 - 1514
  • [9] Proximal Linearized Iteratively Reweighted Algorithms for Nonconvex and Nonsmooth Optimization Problem
    Yeo, Juyeb
    Kang, Myeongmin
    AXIOMS, 2022, 11 (05)
  • [10] An extrapolated proximal iteratively reweighted method for nonconvex composite optimization problems
    Zhili Ge
    Zhongming Wu
    Xin Zhang
    Qin Ni
    Journal of Global Optimization, 2023, 86 : 821 - 844