A method of Image transform based on linear elements

被引:0
作者
Wang Min [1 ]
Zhang Yanning [1 ]
Sun Jinqiu [1 ]
Li Ying [1 ]
Ma Miao [2 ]
机构
[1] Northwestern Polytech Univ, Comp Sch, Xian 710072, Shaanxi, Peoples R China
[2] Shaanxi Normal Univ, Sch Comp Sci, Xian 710062, Peoples R China
来源
PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS (ICIG 2009) | 2009年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICIG.2009.169
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The influence of noises is obviously in the image transform method based on the pixels elements representation of images. To some extent the method of image transform based on linear elements representation can solution the problem. The Beamlet transform is an effective method of line segment extraction. This work improved the traditional Beamlet transform by considering the directional information of lines. The improved method transformed a digital image to a coefficient matrix. This method can embody the linear singularity of some linear targets and can be used for edge detection and extracting other useful targets in noisy images. The experimental results on manual images and SAR images demonstrate the effectiveness of this method.
引用
收藏
页码:124 / 128
页数:5
相关论文
共 10 条
[1]  
AMBERG V, 2004, P IEEE IGARSS 2004 A, P568
[2]  
BANDERA A, 2006, PRL, P578
[3]   Continuous Curvelet Transform -: I.: Resolution of the wavefront set [J].
Candès, EJ ;
Donoho, DL .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (02) :162-197
[4]   Direction-adaptive discrete wavelet transform for image compression [J].
Chang, Chuo-Ling ;
Girod, Bernd .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (05) :1289-1302
[5]  
DONOHO DL, 2001, J NETWORK COMPUTATIO, P371
[6]  
DONOHO DL, 2002, SPRINGER LECT NOTES, P145
[7]  
DONOHO DL, 2000, WAVELET APPL SIGNAL, V8, P233
[8]  
MIN W, 2008, 9 INT C SIGN PROC, P1120
[9]  
Qu G., 2001, DIRECTIONAL MORPHOLO
[10]   ON OPTIMAL INFINITE IMPULSE-RESPONSE EDGE-DETECTION FILTERS [J].
SARKAR, S ;
BOYER, KL .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (11) :1154-1171