Measurement of Ambipolar Diffusion Coefficient of Photoexcited Carriers with Ultrafast Reflective Grating-Imaging Technique

被引:9
作者
Chen, Ke [1 ]
Sheehan, Nathanial [2 ]
He, Feng [1 ,3 ]
Meng, Xianghai [1 ]
Mason, Sarah C. [1 ]
Bank, Seth R. [2 ]
Wang, Yaguo [1 ,3 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Microelect Res Ctr, Dept Elect & Comp Engn, Austin, TX 78758 USA
[3] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
来源
ACS PHOTONICS | 2017年 / 4卷 / 06期
基金
美国国家科学基金会;
关键词
carrier diffusion coefficient; carrier diffusion length; GaAs/AlAs quantum wells; bulk GaAs; INTERFACE ROUGHNESS SCATTERING; GAAS QUANTUM-WELLS; MOBILITY; BULK; HETEROSTRUCTURES; SPECTROSCOPY; ABSORPTION; EXCITONS;
D O I
10.1021/acsphotonics.7b00187
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel ultrafast reflective grating-imaging technique has been developed to measure ambipolar carrier diffusion in GaAs/AlAs quantum wells and bulk GaAs. By integrating a transmission grating and an imaging system into the traditional pump probe setup, this technique can acquire carrier diffusion properties conveniently and accurately. The fitted results of the diffusion coefficient and diffusion length in bulk GaAs agree well with the literature values obtained by other techniques. The diffusion coefficient and diffusion length of GaAs/AlAs quantum wells are found to increase with the well layer thickness, which suggests that interface roughness scattering dominates carrier diffusion in GaAs/AlAs quantum wells. With the advantages of simple operation, sensitive detection, rapid and nondestructive measurement, and extensive applicability, the ultrafast reflective grating-imaging technique has great potential in experimental study of carrier diffusion in various materials.
引用
收藏
页码:1440 / 1446
页数:7
相关论文
共 31 条
  • [1] Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures
    Achermann, M
    Nechay, BA
    Morier-Genoud, F
    Schertel, A
    Siegner, U
    Keller, U
    [J]. PHYSICAL REVIEW B, 1999, 60 (03): : 2101 - 2105
  • [2] MULTIDIMENSIONAL QUANTUM WELL LASER AND TEMPERATURE-DEPENDENCE OF ITS THRESHOLD CURRENT
    ARAKAWA, Y
    SAKAKI, H
    [J]. APPLIED PHYSICS LETTERS, 1982, 40 (11) : 939 - 941
  • [3] Born M., 1970, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, V4th
  • [4] Spin gratings and the measurement of electron drift mobility in multiple quantum well semiconductors
    Cameron, AR
    Riblet, P
    Miller, A
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (25) : 4793 - 4796
  • [5] ROOM-TEMPERATURE EXCITONIC NONLINEAR ABSORPTION AND REFRACTION IN GAAS/ALGAAS MULTIPLE QUANTUM WELL STRUCTURES
    CHEMLA, DS
    MILLER, DAB
    SMITH, PW
    GOSSARD, AC
    WIEGMANN, W
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1984, 20 (03) : 265 - 275
  • [6] A transmission-grating-modulated pump-probe absorption spectroscopy and demonstration of diffusion dynamics of photoexcited carriers in bulk intrinsic GaAs film
    Chen, Ke
    Wang, Wenfang
    Chen, Jianming
    Wen, Jinhui
    Lai, Tianshu
    [J]. OPTICS EXPRESS, 2012, 20 (04): : 3580 - 3585
  • [7] INTERFACE ROUGHNESS SCATTERING AND ELECTRON MOBILITIES IN THIN GAAS QUANTUM WELLS
    GOTTINGER, R
    GOLD, A
    ABSTREITER, G
    WEIMANN, G
    SCHLAPP, W
    [J]. EUROPHYSICS LETTERS, 1988, 6 (02): : 183 - 188
  • [8] ENHANCEMENT OF ELECTRON-HOLE PAIR MOBILITIES IN THIN GAAS/ALXGA1-XAS QUANTUM-WELLS
    HILLMER, H
    FORCHEL, A
    TU, CW
    [J]. PHYSICAL REVIEW B, 1992, 45 (03): : 1240 - 1245
  • [9] OPTICAL INVESTIGATIONS ON THE MOBILITY OF TWO-DIMENSIONAL EXCITONS IN GAAS/GA1-XALXAS QUANTUM WELLS
    HILLMER, H
    FORCHEL, A
    HANSMANN, S
    MOROHASHI, M
    LOPEZ, E
    MEIER, HP
    PLOOG, K
    [J]. PHYSICAL REVIEW B, 1989, 39 (15): : 10901 - 10912
  • [10] ELECTRON-HOLE SCATTERING IN GAAS QUANTUM WELLS
    HOPFEL, RA
    SHAH, J
    WOLFF, PA
    GOSSARD, AC
    [J]. PHYSICAL REVIEW B, 1988, 37 (12): : 6941 - 6954