Semi-discrete breather in a helicoidal DNA double chain-model

被引:18
作者
Okaly, J. Brizar [1 ,3 ]
Mvogo, Alain [1 ,3 ,4 ]
Woulache, R. Laure [2 ,3 ]
Kofane, T. Crepin [2 ,3 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, Lab Biophys, POB 812, Yaounde, Cameroon
[2] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[3] Univ Yaounde I, African Ctr Excellence Informat & Commun Technol, POB 812, Yaounde, Cameroon
[4] AIMS, 6-8 Melrose Rd, ZA-7945 Muizenberg, South Africa
关键词
Zigzag DNA double helix model; Damping forces; Longitudinal and transversal out-of-phase motions; Modulational instability; Soliton; ONE-DIMENSIONAL TURBULENCE; GINZBURG-LANDAU EQUATION; PEYRARD-BISHOP MODEL; DOUBLE HELICES; SOLITON EXCITATIONS; ENVELOPE SOLITONS; DYNAMICS; DENATURATION; VISCOSITY; IMPACT;
D O I
10.1016/j.wavemoti.2018.06.005
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The nonlinear dynamics of DNA molecular chain is studied for longitudinal and transversal motions through a new discrete helicoidal zigzag model with four degrees of freedom. We take into account the Stokes and hydrodynamical viscous forces. In the semi-discrete approximation, we show that the coupled nonlinear partial differential equations for the longitudinal and transversal out-of-phase motions can be reduced to the nonlinear Schrodinger equation with complex coefficients, allowing analytical breather soliton solution. We found analytically as well as numerically that increasing the damping constant reduces the amplitude and increases the width of the soliton. When the zigzag angle decreases, the height of the soliton increases, but its width remains constant. The linear stability analysis of the system is performed. The growth rate of the instability and the instability regions are discussed as the functions of damping constant, zigzag angle and system parameters. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 47 条
[1]   Nonlinear dynamics of DNA - Riccati generalized solitary wave solutions [J].
Alka, W. ;
Goyal, Amit ;
Kumar, C. Nagaraja .
PHYSICS LETTERS A, 2011, 375 (03) :480-483
[2]  
[Anonymous], 1975, Plasma Instabilities and Nonlinear Effects, DOI DOI 10.1007/978-3-642-65980-5
[3]   Soliton dynamics in damped and forced Boussinesq equations [J].
Arévalo, E ;
Gaididei, Y ;
Mertens, FG .
EUROPEAN PHYSICAL JOURNAL B, 2002, 27 (01) :63-74
[4]  
Calladine C.R., 1997, UNDERSTANDING DNA, Vsecond
[5]   Experimental tests of the Peyrard-Bishop model applied to the melting of very short DNA chains [J].
Campa, A ;
Giansanti, A .
PHYSICAL REVIEW E, 1998, 58 (03) :3585-3588
[6]   One-dimensional "turbulence" in a discrete lattice [J].
Daumont, I ;
Peyrard, M .
CHAOS, 2003, 13 (02) :624-636
[7]   ENTROPY-DRIVEN TRANSITION IN A ONE-DIMENSIONAL SYSTEM [J].
DAUXOIS, T ;
PEYRARD, M .
PHYSICAL REVIEW E, 1995, 51 (05) :4027-4040
[8]   ENTROPY-DRIVEN DNA DENATURATION [J].
DAUXOIS, T ;
PEYRARD, M ;
BISHOP, AR .
PHYSICAL REVIEW E, 1993, 47 (01) :R44-R47
[9]   DYNAMICS OF BREATHER MODES IN A NONLINEAR HELICOIDAL MODEL OF DNA [J].
DAUXOIS, T .
PHYSICS LETTERS A, 1991, 159 (8-9) :390-395
[10]   NATURE OF THE OPEN STATE IN LONG POLYNUCLEOTIDE DOUBLE HELICES - POSSIBILITY OF SOLITON EXCITATIONS [J].
ENGLANDER, SW ;
KALLENBACH, NR ;
HEEGER, AJ ;
KRUMHANSL, JA ;
LITWIN, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (12) :7222-7226