SMC for Nonlinear Stochastic Switching Systems With Quantization

被引:28
作者
Qi, Wenhai [1 ,2 ]
Zong, Guangdeng [3 ]
Karimi, Hamid Reza [4 ]
机构
[1] Qufu Normal Univ, Sch Engn, Rizhao 276826, Peoples R China
[2] Chengdu Univ, Sch Informat Sci & Engn, Chengdu 610106, Peoples R China
[3] Qufu Normal Univ, Sch Automat, Rizhao 276826, Peoples R China
[4] Politecn Milan, Dept Mech Engn, I-20133 Milan, Italy
基金
中国国家自然科学基金;
关键词
Quantization (signal); Switching systems; Uncertainty; Stability criteria; Symmetric matrices; Switches; Markov processes; Semi-Markov switch parameters; signal quantization; stochastic stability; SLIDING MODE CONTROL; MARKOV JUMP SYSTEMS; ROBUST STABILIZATION; STABILITY;
D O I
10.1109/TCSII.2020.3047785
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief focuses on the sliding mode control (SMC) design for nonlinear stochastic switching systems subject to semi-Markov switching parameters and signal quantization. The aim of this brief is to design an efficient SMC scheme under quantization error effect. To this end, a mode-independent sliding surface is adopted to avoid the potential repetitive jumping effects. Then, based on the weak infinitesimal operator theory, sufficient conditions are given for the corresponding stochastic stability criteria. Furthermore, an appropriate SMC law is proposed to drive the state signals onto the predefined manifold and the effect of quantization error can be effectively attenuated. Finally, a single-link robot arm model is provided to illustrate the effectiveness of the theoretical findings.
引用
收藏
页码:2032 / 2036
页数:5
相关论文
共 26 条
[1]   Robust stabilization of uncertain fuzzy systems using variable structure system approach [J].
Choi, Han Ho .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (03) :715-724
[2]   STABILIZING A LINEAR-SYSTEM WITH QUANTIZED STATE FEEDBACK [J].
DELCHAMPS, DF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (08) :916-924
[3]   An Improved Homogeneous Polynomial Approach for Adaptive Sliding-Mode Control of Markov Jump Systems With Actuator Faults [J].
Du, Chenglong ;
Li, Fanbiao ;
Yang, Chunhua .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (03) :955-969
[4]  
Emelyanov S. V, 1967, Variable Structure Control Systems
[5]   Sliding Mode Control of Singular Stochastic Markov Jump Systems [J].
Feng, Zhiguang ;
Shi, Peng .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :4266-4273
[6]   The sector bound approach to quantized feedback control [J].
Fu, MY ;
Xie, LH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1698-1711
[7]   Stochastic stability and robust stabilization of semi-Markov jump linear systems [J].
Huang, Ji ;
Shi, Yang .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2013, 23 (18) :2028-2043
[8]   Observer-based adaptive sliding mode control for nonlinear Markovian jump systems [J].
Li, Hongyi ;
Shi, Peng ;
Yao, Deyin ;
Wu, Ligang .
AUTOMATICA, 2016, 64 :133-142
[9]   Fixed-Time Synchronization of Coupled Neural Networks With Discontinuous Activation and Mismatched Parameters [J].
Li, Na ;
Wu, Xiaoqun ;
Feng, Jianwen ;
Xu, Yuhua ;
Lu, Jinhu .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) :2470-2482
[10]   Synchronizability of Duplex Networks [J].
Li, Yang ;
Wu, Xiaoqun ;
Lu, Jun-an ;
Lu, Jinhu .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2016, 63 (02) :206-210