CONVERGENCE TO TRAVELING WAVES FOR TIME-PERIODIC BISTABLE REACTION-DIFFUSION EQUATIONS

被引:5
作者
Ding, Weiwei [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Traveling waves; time-periodicity; reaction-diffusion equations; bistable nonlinearity; FRONTS; MONOTONICITY; DYNAMICS;
D O I
10.1090/proc/15338
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the equation u(t) = u(xx) + f(t,u), x is an element of R, t > 0, where f(t, x) periodically depends on t and is of bistable type. Classical results showed that for a large class of initial functions, the solutions converge to a periodic traveling wave if it connects two linearly stable time-periodic states. Under some conditions on the initial functions, we prove this convergence result by a new approach which allows the time-periodic states to be degenerate.
引用
收藏
页码:1647 / 1661
页数:15
相关论文
共 20 条
[1]   Periodic traveling waves and locating oscillating patterns in multidimensional domains [J].
Alikakos, ND ;
Bates, PW ;
Chen, XF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (07) :2777-2805
[2]   THE ZERO-SET OF A SOLUTION OF A PARABOLIC EQUATION [J].
ANGENENT, S .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 390 :79-96
[3]  
Berestycki H, 2007, CONTEMP MATH, V446, P101
[4]   Pulsating fronts for bistable on average reaction-diffusion equations in a time periodic environment [J].
Contri, Benjamin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (01) :90-132
[5]   DYNAMICS OF TIME-PERIODIC REACTION-DIFFUSION EQUATIONS WITH FRONT-LIKE INITIAL DATA ON R [J].
Ding, Weiwei ;
Matano, Hiroshi .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (03) :2411-2462
[6]   Dynamics of time-periodic reaction-diffusion equations with compact initial support on R [J].
Ding, Weiwei ;
Matano, Hiroshi .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 131 :326-371
[7]   Bistable Pulsating Fronts for Reaction-Diffusion Equations in a Periodic Habitat [J].
Ding, Weiwei ;
Hamel, Francois ;
Zhao, Xiao-Qiang .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (04) :1189-1265
[8]   Convergence and sharp thresholds for propagation in nonlinear diffusion problems [J].
Du, Yihong ;
Matano, Hiroshi .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (02) :279-312
[9]  
Ducrot A, 2014, T AM MATH SOC, V366, P5541
[10]  
FIFE PC, 1981, ARCH RATION MECH AN, V75, P281