Normal-Metal Hot-Electron Nanobolometer With Johnson Noise Thermometry Readout

被引:5
作者
Karasik, Boris S. [1 ]
McKitterick, Christopher B. [2 ]
Reck, Theodore J. [1 ]
Prober, Daniel E. [2 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Yale Univ, Dept Phys & Appl Phys, New Haven, CT 06520 USA
关键词
Hot-electron; Johnson noise thermometry (JNT); nanobolometer; THz astrophysics; PHONON RELAXATION; DIFFUSION;
D O I
10.1109/TTHZ.2014.2370755
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The sensitivity of a THz hot-electron nanobolometer (nano-HEB) made from a normal metal is analyzed. Johnson Noise Thermometry (JNT) is employed as a readout technique. In contrast to its superconducting Transition-Edge Sensor (TES) counterpart, the normal-metal nano-HEB can operate at any cryogenic temperature depending on the required radiation background limited Noise Equivalent Power (NEP). It does not require bias lines; 100s of nano-HEBs can be read by a single low-noise X-band amplifier via a filter bank channelizer. The modeling predicts that even with the sensitivity penalty due to the amplifier noise, an NEP similar to 10(-20)-10(-19)W/Hz(1/2) can be expected at 50-100 mK in 10-20 nm thin titanium (Ti) normal metal HEBs with niobium (Nb) contacts. This NEP is fairly constant over a range of readout frequencies similar to 10 GHz. Although materials with weaker electron-phonon coupling (bismuth, graphene) do not improve the minimum achievable NEP, they can be considered if a larger than 10 GHz readout bandwidth is required.
引用
收藏
页码:16 / 21
页数:6
相关论文
共 29 条
[1]  
ANDREEV AF, 1964, SOV PHYS JETP-USSR, V19, P1228
[2]  
Barry P. S., 2012, P SOC PHOTO-OPT INS, V8452
[3]   Hot Electron Cooling by Acoustic Phonons in Graphene [J].
Betz, A. C. ;
Vialla, F. ;
Brunel, D. ;
Voisin, C. ;
Picher, M. ;
Cavanna, A. ;
Madouri, A. ;
Feve, G. ;
Berroir, J. -M. ;
Placais, B. ;
Pallecchi, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[4]   Mixing and noise in diffusion and phonon cooled superconducting hot-electron bolometers [J].
Burke, PJ ;
Schoelkopf, RJ ;
Prober, DE ;
Skalare, A ;
Karasik, BS ;
Gaidis, MC ;
McGrath, WR ;
Bumble, B ;
LeDuc, HG .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (03) :1644-1653
[5]  
Day P., COMMUNICATION
[6]   Fluctuations in the electron system of a superconductor exposed to a photon flux [J].
de Visser, P. J. ;
Baselmans, J. J. A. ;
Bueno, J. ;
Llombart, N. ;
Klapwijk, T. M. .
NATURE COMMUNICATIONS, 2014, 5
[7]   Superconducting microstrip amplifiers with sub-Kelvin noise temperature near 4 GHz [J].
DeFeo, M. P. ;
Plourde, B. L. T. .
APPLIED PHYSICS LETTERS, 2012, 101 (05)
[8]   THE MEASUREMENT OF THERMAL RADIATION AT MICROWAVE FREQUENCIES [J].
DICKE, RH .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1946, 17 (07) :268-275
[9]   Photon shot noise limited detection of terahertz radiation using a quantum capacitance detector [J].
Echternach, P. M. ;
Stone, K. J. ;
Bradford, C. M. ;
Day, P. K. ;
Wilson, D. W. ;
Megerian, K. G. ;
Llombart, N. ;
Bueno, J. .
APPLIED PHYSICS LETTERS, 2013, 103 (05)
[10]  
Eom BH, 2012, NAT PHYS, V8, P623, DOI [10.1038/nphys2356, 10.1038/NPHYS2356]