Controlling magnetoresistance by tuning semimetallicity through dimensional confinement and heteroepitaxy

被引:11
作者
Chatterjee, Shouvik [1 ,2 ]
Khalid, Shoaib [3 ,4 ]
Inbar, Hadass S. [5 ]
Goswami, Aranya [1 ]
Guo, Taozhi [6 ]
Chang, Yu-Hao [5 ]
Young, Elliot [5 ]
Fedorov, Alexei, V [7 ]
Read, Dan [1 ,8 ]
Janotti, Anderson [3 ]
Palmstrom, Chris J. [1 ,5 ,9 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[3] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[4] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[5] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[6] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[7] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[8] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales
[9] Univ Calif Santa Barbara, Calif NanoSyst Inst, Santa Barbara, CA 93106 USA
来源
SCIENCE ADVANCES | 2021年 / 7卷 / 16期
关键词
INITIO MOLECULAR-DYNAMICS; METAL; MOBILITY; GASB; HETEROSTRUCTURES; SYSTEMS; STATES; AU;
D O I
10.1126/sciadv.abe8971
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Controlling electronic properties via band structure engineering is at the heart of modern semiconductor devices. Here, we extend this concept to semimetals where, using LuSb as a model system, we show that quantum confinement lifts carrier compensation and differentially affects the mobility of the electron and hole-like carriers resulting in a strong modification in its large, nonsaturating magnetoresistance behavior. Bonding mismatch at the heteroepitaxial interface of a semimetal (LuSb) and a semiconductor (GaSb) leads to the emergence of a twodimensional, interfacial hole gas. This is accompanied by a charge transfer across the interface that provides another avenue to modify the electronic structure and magnetotransport properties in the ultrathin limit. Our work lays out a general strategy of using confined thin-film geometries and heteroepitaxial interfaces to engineer electronic structure in semimetallic systems, which allows control over their magnetoresistance behavior and simultaneously provides insights into its origin.
引用
收藏
页数:9
相关论文
共 48 条
[41]  
SANDOMIRSKII VB, 1967, SOV PHYS JETP-USSR, V25, P101
[42]   Formation of two-dimensional electron and hole gases at the interface of half-Heusler semiconductors [J].
Sharan, Abhishek ;
Gui, Zhigang ;
Janotti, Anderson .
PHYSICAL REVIEW MATERIALS, 2019, 3 (06)
[43]   The fractional quantum Hall effect [J].
Stormer, HL ;
Tsui, DC ;
Gossard, AC .
REVIEWS OF MODERN PHYSICS, 1999, 71 (02) :S298-S305
[44]   Resistivity plateau and extreme magnetoresistance in LaSb [J].
Tafti, F. F. ;
Gibson, Q. D. ;
Kushwaha, S. K. ;
Haldolaarachchige, N. ;
Cava, R. J. .
NATURE PHYSICS, 2016, 12 (03) :272-+
[45]   Temperature-field phase diagram of extreme magnetoresistance [J].
Tafti, Fazel Fallah ;
Gibson, Quinn ;
Kushwaha, Satya ;
Krizan, Jason W. ;
Haldolaarachchige, Neel ;
Cava, Robert Joseph .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (25) :E3475-E3481
[46]  
Thouin F, 2019, NAT MATER, V18, P349, DOI [10.1038/s41563-018-0262-7, 10.1016/0022-3093(95)00355-X]
[47]   Origin of the extremely large magnetoresistance in the semimetal YSb [J].
Xu, J. ;
Ghimire, N. J. ;
Jiang, J. S. ;
Xiao, Z. L. ;
Botana, A. S. ;
Wang, Y. L. ;
Hao, Y. ;
Pearson, J. E. ;
Kwok, W. K. .
PHYSICAL REVIEW B, 2017, 96 (07)
[48]   Compensated Semimetal LaSb with Unsaturated Magnetoresistance [J].
Zeng, L. -K. ;
Lou, R. ;
Wu, D. -S. ;
Xu, Q. N. ;
Guo, P. -J. ;
Kong, L. -Y. ;
Zhong, Y. -G. ;
Ma, J. -Z. ;
Fu, B. -B. ;
Richard, P. ;
Wang, P. ;
Liu, G. T. ;
Lu, L. ;
Huang, Y. -B. ;
Fang, C. ;
Sun, S. -S. ;
Wang, Q. ;
Wang, L. ;
Shi, Y. -G. ;
Weng, H. M. ;
Lei, H. -C. ;
Liu, K. ;
Wang, S. -C. ;
Qian, T. ;
Luo, J. -L. ;
Ding, H. .
PHYSICAL REVIEW LETTERS, 2016, 117 (12)