On domination number of Cartesian product of directed cycles

被引:16
|
作者
Liu, Juan [1 ,2 ]
Zhang, Xindong [2 ]
Chen, Xing [1 ]
Meng, Jixiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[2] Xinjiang Normal Univ, Coll Maths Phys & Informat Sci, Urumqi 830046, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Cartesian product; Domination number; Combinatorial problems;
D O I
10.1016/j.ipl.2009.11.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let gamma(G) denote the domination number of a digraph G and let C-m square C-n denote the Cartesian product of C-m and C-n, the directed cycles of length m, n >= 2. In this paper, we determine the exact values: gamma(C-2 square C-n) = n; gamma(C-3 square C-n) = n if n equivalent to 0 (mod 3), otherwise, gamma(C-3 square C-n) = n + 1: gamma(C-4 square C-n) = 3n/2 if n equivalent to 0 (mod 8), otherwise, gamma(C-4 square C-n) = n + inverted right perpendicularn+1/2inverted left perpendicular. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 173
页数:3
相关论文
共 50 条
  • [41] L(2, 1)-LABELING OF THE CARTESIAN AND STRONG PRODUCT OF TWO DIRECTED CYCLES
    Shao, Zehui
    Jiang, Huiqin
    Vesel, Aleksander
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2018, 1 (01): : 49 - 61
  • [42] THE GEODETIC DOMINATION NUMBER FOR THE PRODUCT OF GRAPHS
    Chellathurai, S. Robinson
    Vijaya, S. Padma
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (04) : 19 - 30
  • [43] Certain domination numbers for Cartesian product of graphs
    Arulanand, S.
    Rajan, R. Sundara
    Prabhu, S.
    Stephen, Sudeep
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (03) : 1045 - 1058
  • [44] Convex domination in the composition and cartesian product of graphs
    Labendia, Mhelmar A.
    Canoy, Sergio R., Jr.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (04) : 1003 - 1009
  • [45] GLOBAL EQUITABLE DOMINATION IN CARTESIAN PRODUCT OF GRAPHS
    Vaidya, S. K.
    Pandit, R. M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (05): : 341 - 356
  • [46] Convex domination in the composition and cartesian product of graphs
    Mhelmar A. Labendia
    Sergio R. Canoy
    Czechoslovak Mathematical Journal, 2012, 62 : 1003 - 1009
  • [47] ROMAN DOMINATION IN CARTESIAN PRODUCT GRAPHS AND STRONG PRODUCT GRAPHS
    Gonzalez Yero, Ismael
    Alberto Rodriguez-Velazquez, Juan
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) : 262 - 274
  • [48] On the 2-domination Number of Cylinders with Small Cycles
    Garzon, Ester M.
    Martinez, Jose A.
    Moreno, Juan J.
    Puertas, Maria L.
    FUNDAMENTA INFORMATICAE, 2022, 185 (02) : 185 - 199
  • [49] ON CONDITIONAL CONNECTIVITY OF THE CARTESIAN PRODUCT OF CYCLES
    Saraf, J. B.
    Borse, Y. M.
    Mundhe, Ganesh
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (01) : 17 - 34
  • [50] On the total {k}-domination number of Cartesian products of graphs
    Li, Ning
    Hou, Xinmin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 18 (02) : 173 - 178