On domination number of Cartesian product of directed cycles

被引:16
|
作者
Liu, Juan [1 ,2 ]
Zhang, Xindong [2 ]
Chen, Xing [1 ]
Meng, Jixiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[2] Xinjiang Normal Univ, Coll Maths Phys & Informat Sci, Urumqi 830046, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Cartesian product; Domination number; Combinatorial problems;
D O I
10.1016/j.ipl.2009.11.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let gamma(G) denote the domination number of a digraph G and let C-m square C-n denote the Cartesian product of C-m and C-n, the directed cycles of length m, n >= 2. In this paper, we determine the exact values: gamma(C-2 square C-n) = n; gamma(C-3 square C-n) = n if n equivalent to 0 (mod 3), otherwise, gamma(C-3 square C-n) = n + 1: gamma(C-4 square C-n) = 3n/2 if n equivalent to 0 (mod 8), otherwise, gamma(C-4 square C-n) = n + inverted right perpendicularn+1/2inverted left perpendicular. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 173
页数:3
相关论文
共 50 条
  • [31] A lower bound for the packing chromatic number of the Cartesian product of cycles
    Jacobs, Yoland
    Jonck, Elizabeth
    Joubert, Ernst J.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (07): : 1344 - 1357
  • [32] Radio Number of the Cartesian Product of Stars and Middle Graph of Cycles
    Cui, Linlin
    Li, Feng
    27TH IEEE/ACIS INTERNATIONAL SUMMER CONFERENCE ON SOFTWARE ENGINEERING ARTIFICIAL INTELLIGENCE NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING, SNPD 2024-SUMMER, 2024, : 200 - 205
  • [33] A note on the chromatic number of the square of the Cartesian product of two cycles
    Shao, Zehui
    Vesel, Aleksander
    DISCRETE MATHEMATICS, 2013, 313 (09) : 999 - 1001
  • [34] K-domination number of products of two directed cycles and two directed paths
    Shaheen, Ramy
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2018, 9 (02) : 197 - 206
  • [35] Signed 2-independence of Cartesian product of directed cycles and paths
    Wang, Haichao
    Kim, Hye Kyung
    UTILITAS MATHEMATICA, 2013, 90 : 297 - 306
  • [36] Improving the Clark-Suen bound on the domination number of the Cartesian product of graphs
    Bresar, Bostjan
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2398 - 2401
  • [37] On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles
    Dehgardi, Nasrin
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (02) : 315 - 324
  • [38] ON TOTAL DOMINATION IN THE CARTESIAN PRODUCT OF GRAPHS
    Bresar, Bostjan
    Hartinger, Tatiana Romina
    Kos, Tim
    Milanic, Martin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 963 - 976
  • [39] Power domination of the cartesian product of graphs
    Koh, K. M.
    Soh, K. W.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (01) : 22 - 30
  • [40] The exponent of Cartesian product of cycles
    Kim, Byeong Moon
    Song, Byung Chul
    Hwang, Woonjae
    APPLIED MATHEMATICS LETTERS, 2009, 22 (04) : 561 - 564