On domination number of Cartesian product of directed cycles

被引:16
|
作者
Liu, Juan [1 ,2 ]
Zhang, Xindong [2 ]
Chen, Xing [1 ]
Meng, Jixiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[2] Xinjiang Normal Univ, Coll Maths Phys & Informat Sci, Urumqi 830046, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Cartesian product; Domination number; Combinatorial problems;
D O I
10.1016/j.ipl.2009.11.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let gamma(G) denote the domination number of a digraph G and let C-m square C-n denote the Cartesian product of C-m and C-n, the directed cycles of length m, n >= 2. In this paper, we determine the exact values: gamma(C-2 square C-n) = n; gamma(C-3 square C-n) = n if n equivalent to 0 (mod 3), otherwise, gamma(C-3 square C-n) = n + 1: gamma(C-4 square C-n) = 3n/2 if n equivalent to 0 (mod 8), otherwise, gamma(C-4 square C-n) = n + inverted right perpendicularn+1/2inverted left perpendicular. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 173
页数:3
相关论文
共 50 条
  • [21] Antidirected Hamilton cycles in the Cartesian product of directed cycles
    Bogdanowicz, Zbigniew R.
    ARS COMBINATORIA, 2014, 114 : 345 - 351
  • [22] Double total domination number of Cartesian product of paths
    Li, Linyu
    Yue, Jun
    Zhang, Xia
    AIMS MATHEMATICS, 2023, 8 (04): : 9506 - 9519
  • [23] ON THE TOTAL SIGNED DOMINATION NUMBER OF THE CARTESIAN PRODUCT OF PATHS
    Gao, Hong
    Zhang, Qingfang
    Yang, Yuansheng
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (02) : 52 - 62
  • [24] On the domination number of the cartesian product of the cycle of length n and any graph
    El-Zahar, M. H.
    Khamis, S. M.
    Nazzal, Kh. M.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (04) : 515 - 522
  • [25] BBM ALGORITHM FOR SIGNED MIXED DOMINATION IN CARTESIAN PRODUCT OF CYCLES
    Gao, Hong
    Liu, Enmao
    Yang, Yuansheng
    Liu, Wei
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (04): : 1507 - 1520
  • [26] Total Domination Number of Products of Two Directed Cycles
    Shaheen, Ramy
    UTILITAS MATHEMATICA, 2013, 92 : 235 - 250
  • [27] The 2-rainbow domination number of Cartesian bundles over cycles
    Brezovnik, Simon
    Poklukar, Darja Rupnik
    Zerovnik, Janez
    CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2024,
  • [28] The secure domination number of Cartesian products of small graphs with paths and cycles
    Haythorpe, Michael
    Newcombe, Alex
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 32 - 45
  • [29] Hamiltonicity of the cartesian product of two directed cycles minus a subgroup
    Barone, Victoria
    Mauntel, Matthew
    Miller, Micah
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2006, 3 (01) : 39 - 43
  • [30] On the {k}-domination number of Cartesian products of graphs
    Hou, Xinmin
    Lu, You
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3413 - 3419