WIENER-LANDIS CRITERION FOR KOLMOGOROV-TYPE OPERATORS

被引:9
作者
Kogoj, Alessia E. [1 ]
Lanconelli, Ermanno [2 ]
Tralli, Giulio [3 ]
机构
[1] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, PU, Italy
[2] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
[3] Sapienza Univ Roma, Dipartimento Matemat, Piazzale Aldo Moro 5, I-00185 Rome, Italy
关键词
Kolmogorov operators; potential analysis; Perron-Wiener solution; boundary regularity; Wiener test; FUNDAMENTAL SOLUTION; PARABOLIC EQUATIONS; DIRICHLET PROBLEM; HEAT-EQUATION; COEFFICIENTS;
D O I
10.3934/dcds.2018102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a necessary and sufficient condition for a boundary point to be regular for the Dirichlet problem related to a class of Kolmogorov-type equations. Our criterion is inspired by two classical criteria for the heat equation: the Evans-Gariepy's Wiener test, and a criterion by Landis expressed in terms of a series of caloric potentials.
引用
收藏
页码:2467 / 2485
页数:19
相关论文
共 20 条
[1]  
[Anonymous], 1985, Matrix Analysis
[2]   Riesz and Poisson-Jensen Representation Formulas for a Class of Ultraparabolic Operators on Lie Groups [J].
Cinti, Chiara ;
Lanconelli, Ermanno .
POTENTIAL ANALYSIS, 2009, 30 (02) :179-200
[3]  
Constantinescu C., 1972, GRUNDLEHREN MATH WIS, V158
[4]  
EVANS LC, 1982, ARCH RATION MECH AN, V78, P293, DOI 10.1007/BF00249583
[5]   WIENER CRITERION FOR DIVERGENCE FORM PARABOLIC OPERATORS WITH C1-DINI CONTINUOUS COEFFICIENTS [J].
FABES, EB ;
GAROFALO, N ;
LANCONELLI, E .
DUKE MATHEMATICAL JOURNAL, 1989, 59 (01) :191-232
[6]   WIENER CRITERION FOR PARABOLIC EQUATIONS WITH VARIABLE-COEFFICIENTS AND ITS CONSEQUENCES [J].
GAROFALO, N ;
LANCONELLI, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 308 (02) :811-836
[7]   LEVEL SETS OF THE FUNDAMENTAL SOLUTION AND HARNACK INEQUALITY FOR DEGENERATE EQUATIONS OF KOLMOGOROV TYPE [J].
GAROFALO, N ;
LANCONELLI, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 321 (02) :775-792
[8]   ESTIMATES OF THE FUNDAMENTAL SOLUTION AND WIENER CRITERION FOR THE HEAT-EQUATION ON THE HEISENBERG-GROUP [J].
GAROFALO, N ;
SEGALA, F .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (04) :1155-1196
[9]   HYPOELLIPTIC 2ND ORDER DIFFERENTIAL EQUATIONS [J].
HORMANDE.L .
ACTA MATHEMATICA UPPSALA, 1967, 119 (3-4) :147-&
[10]   On the Dirichlet problem for hypoelliptic evolution equations: Perron-Wiener solution and a cone-type criterion [J].
Kogoj, Alessia E. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :1524-1539