Lyapunov functions for input-to-state stability of infinite-dimensional systems with integrable inputs

被引:4
|
作者
Mironchenko, Andrii [1 ]
机构
[1] Univ Passau, Fac Comp Sci & Math, Passau, Germany
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Nonlinear systems; infinite-dimensional systems; input-to-state stability; Lyapunov methods; BOUNDARY DISTURBANCES; CIRCLE CRITERION; ISS; STABILIZATION; RESPECT; DESIGN;
D O I
10.1016/j.ifacol.2020.12.1222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we extend the ISS Lyapunov methodology to make it suitable for the analysis of ISS w.r.t. inputs from L-p-spaces. We show that the existence of a so-called L-p-ISS Lyapunov function implies L-p-ISS of a system. Also, we show that existence of a noncoercive L-p-ISS Lyapunov function implies L-p-ISS of a control system provided the flow map is continuous w.r.t. states and inputs and provided the finite-time reachability sets, corresponding to the input space L-p are bounded. Copyright (C) 2020 The Authors.
引用
收藏
页码:5336 / 5341
页数:6
相关论文
共 50 条