Supervised Anomaly Detection in Uncertain Pseudoperiodic Data Streams

被引:82
|
作者
Ma, Jiangang [1 ]
Sun, Le [1 ]
Wang, Hua [1 ]
Zhang, Yanchun [1 ]
Aickelin, Uwe [2 ]
机构
[1] Victoria Univ, Ctr Appl Informat, Footscray, Vic 3011, Australia
[2] Univ Nottingham, Comp Sci, Nottingham NG8 1BB, England
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Design; Algorithms; Performance; Anomaly detection; uncertain data stream; segmentation; classification; PATTERNS;
D O I
10.1145/2806890
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Uncertain data streams have been widely generated in many Web applications. The uncertainty in data streams makes anomaly detection from sensor data streams far more challenging. In this article, we present a novel framework that supports anomaly detection in uncertain data streams. The proposed framework adopts the wavelet soft-thresholding method to remove the noises or errors in data streams. Based on the refined data streams, we develop effective period pattern recognition and feature extraction techniques to improve the computational efficiency. We use classification methods for anomaly detection in the corrected data stream. We also empirically show that the proposed approach shows a high accuracy of anomaly detection on several real datasets.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Online Clustering for Evolving Data Streams with Online Anomaly Detection
    Chenaghlou, Milad
    Moshtaghi, Masud
    Leckie, Christopher
    Salehi, Mahsa
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT II, 2018, 10938 : 506 - 519
  • [32] Supervised learning of detection and classification tasks with uncertain training data
    Spence, C
    IMAGE UNDERSTANDING WORKSHOP, 1996 PROCEEDINGS, VOLS I AND II, 1996, : 1395 - 1402
  • [33] From Anomaly Detection to Rumour Detection using Data Streams of Social Platforms
    Nguyen Thanh Tam
    Weidlich, Matthias
    Zheng, Bolong
    Yin, Hongzhi
    Nguyen Quoc Viet Hung
    Stantic, Bela
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (09): : 1016 - 1029
  • [34] Efficient anomaly detection on sampled data streams with contaminated phase I data
    El Sibai, Rayane
    Abdo, Jacques Bou
    Abou Jaoude, Chady
    Demerjian, Jacques
    Assaker, Joseph
    Makhoul, Abdallah
    INTERNET TECHNOLOGY LETTERS, 2020, 3 (05)
  • [35] Anomaly Detection in Catalog Streams
    Yang, Chen
    Du, Zhihui
    Meng, Xiaofeng
    Zhang, Xukang
    Hao, Xinli
    Bader, David A.
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 294 - 311
  • [36] PSEUDOPERIODIC FLUCTUATIONS OF ANNUAL MODULES OF RIVERS AND STREAMS
    LARRAS, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE D, 1973, 277 (17): : 1737 - 1739
  • [37] Toward Supervised Anomaly Detection
    Goernitz, Nico
    Kloft, Marius
    Rieck, Konrad
    Brefeld, Ulf
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2013, 46 : 235 - 262
  • [38] An Architectural Blueprint for a Multi-purpose Anomaly Detection on Data Streams
    Augenstein, Christoph
    Spangenberg, Norman
    Franczyk, Bogdan
    PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS), VOL 1, 2019, : 470 - 476
  • [39] Sequential Model-Free Anomaly Detection for Big Data Streams
    Kurt, Mehmet Necip
    Yilmaz, Yasin
    Wang, Xiaodong
    2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 421 - 425
  • [40] A dynamic ensemble algorithm for anomaly detection in IoT imbalanced data streams
    Jiang, Jun
    Liu, Fagui
    Liu, Yongheng
    Tang, Quan
    Wang, Bin
    Zhong, Guoxiang
    Wang, Weizheng
    COMPUTER COMMUNICATIONS, 2022, 194 : 250 - 257