Supervised Anomaly Detection in Uncertain Pseudoperiodic Data Streams

被引:82
|
作者
Ma, Jiangang [1 ]
Sun, Le [1 ]
Wang, Hua [1 ]
Zhang, Yanchun [1 ]
Aickelin, Uwe [2 ]
机构
[1] Victoria Univ, Ctr Appl Informat, Footscray, Vic 3011, Australia
[2] Univ Nottingham, Comp Sci, Nottingham NG8 1BB, England
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Design; Algorithms; Performance; Anomaly detection; uncertain data stream; segmentation; classification; PATTERNS;
D O I
10.1145/2806890
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Uncertain data streams have been widely generated in many Web applications. The uncertainty in data streams makes anomaly detection from sensor data streams far more challenging. In this article, we present a novel framework that supports anomaly detection in uncertain data streams. The proposed framework adopts the wavelet soft-thresholding method to remove the noises or errors in data streams. Based on the refined data streams, we develop effective period pattern recognition and feature extraction techniques to improve the computational efficiency. We use classification methods for anomaly detection in the corrected data stream. We also empirically show that the proposed approach shows a high accuracy of anomaly detection on several real datasets.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Anomaly detection for smartphone data streams
    Mirsky, Yisroel
    Shabtai, Asaf
    Shapira, Bracha
    Elovici, Yuval
    Rokach, Lior
    PERVASIVE AND MOBILE COMPUTING, 2017, 35 : 83 - 107
  • [2] Outlier Detection on Uncertain Data Streams
    Zhu B.
    Zhong Y.
    Wang X.
    Bai M.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2020, 47 (02): : 134 - 140
  • [3] Anomaly Pattern Detection on Data Streams
    Park, Cheong Hee
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 689 - 692
  • [4] Self-Supervised Learning for Online Anomaly Detection in High-Dimensional Data Streams
    Mozaffari, Mahsa
    Doshi, Keval
    Yilmaz, Yasin
    ELECTRONICS, 2023, 12 (09)
  • [5] Anomaly Detection Guidelines for Data Streams in Big Data
    Rana, Annie Ibrahim
    Estrada, Giovani
    Sole, Marc
    Muntes, Victor
    2016 3RD INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2016), 2016, : 94 - 98
  • [6] A Supervised Approach for Change Detection in Data Streams
    Bondu, A.
    Boulle, M.
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 519 - 526
  • [7] Outlier and anomaly pattern detection on data streams
    Cheong Hee Park
    The Journal of Supercomputing, 2019, 75 : 6118 - 6128
  • [8] Anomaly Detection on Data Streams for Smart Agriculture
    Moso, Juliet Chebet
    Cormier, Stephane
    de Runz, Cyril
    Fouchal, Hacene
    Wandeto, John Mwangi
    AGRICULTURE-BASEL, 2021, 11 (11):
  • [9] OHODIN - Online Anomaly Detection for Data Streams
    Gruhl, Christian
    Tomforde, Sven
    2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS COMPANION (ACSOS-C 2021), 2021, : 193 - 197
  • [10] Review of Anomaly Detection Algorithms for Data Streams
    Lu, Tianyuan
    Wang, Lei
    Zhao, Xiaoyong
    APPLIED SCIENCES-BASEL, 2023, 13 (10):