A parallel multiple reference point approach for multi-objective optimization

被引:50
作者
Figueira, J. R. [4 ,5 ]
Liefooghe, A. [1 ]
Talbi, E. -G. [1 ,2 ]
Wierzbicki, A. P. [3 ]
机构
[1] Univ Lille 1, LIFL, CNRS, INRIA Lille Nord Europe, F-59650 Villeneuve Dascq, France
[2] King Saud Univ, Riyadh, Saudi Arabia
[3] Inst Natl Telecommun, PL-04894 Warsaw, Poland
[4] Univ Paris 09, LAMSADE, CNRS, UMR 7024, F-75775 Paris, France
[5] Univ Tecn Lisboa, Inst Super Tecn, CEG, Ctr Management Studies, P-2780990 Porto Salvo, Portugal
关键词
Multiple objective programming; Parallel computing; Multiple reference point approach; Evolutionary computations; Bi-objective flow-shop scheduling; EVOLUTIONARY ALGORITHM;
D O I
10.1016/j.ejor.2009.12.027
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a multiple reference point approach for multi-objective optimization problems of discrete and combinatorial nature. When approximating the Pareto Frontier, multiple reference points can be used instead of traditional techniques. These multiple reference points can easily be implemented in a parallel algorithmic framework. The reference points can be uniformly distributed within a region that covers the Pareto Frontier. An evolutionary algorithm is based on an achievement scalarizing function that does not impose any restrictions with respect to the location of the reference points in the objective space. Computational experiments are performed on a bi-objective flow-shop scheduling problem. Results, quality measures as well as a statistical analysis are reported in the paper. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:390 / 400
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 2002, Evolutionary algorithms for solving multi-objective problems
[2]  
[Anonymous], LECT NOTES EC MATH S
[3]  
[Anonymous], PARALLEL COMBINATORI
[4]  
Bleuler S, 2003, LECT NOTES COMPUT SC, V2632, P494
[5]  
Brucker P., 1977, Ann. Discrete Math., V1, P343, DOI [DOI 10.1016/S0167-5060(08)70743-X, 10.1016/S0167-5060(08)70743-X]
[6]   ParadisEO: A framework for the reusable design of parallel and distributed metaheuristics [J].
Cahon, S ;
Melab, N ;
Talbi, EG .
JOURNAL OF HEURISTICS, 2004, 10 (03) :357-380
[7]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[8]  
Deb K, 2001, WIL INT S SYS OPT, V16
[9]  
Deb K, 2006, GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, P643
[10]   MINIMIZING TOTAL TARDINESS ON ONE MACHINE IS NP-HARD [J].
DU, JZ ;
LEUNG, JYT .
MATHEMATICS OF OPERATIONS RESEARCH, 1990, 15 (03) :483-495