Microgrid Operations Planning Based on Improving the Flying Sparrow Search Algorithm

被引:43
作者
Nguyen, Trong-The [1 ,2 ]
Ngo, Truong-Giang [3 ]
Dao, Thi-Kien [1 ]
Nguyen, Thi-Thanh-Tan [4 ]
机构
[1] Fujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou 350014, Peoples R China
[2] VNUHCM Univ Informat Technol, Multimedia Commun Lab, Ho Chi Minh City 700000, Vietnam
[3] Thuyloi Univ, Fac Comp Sci & Engn, 175 Tay Son, Hanoi 116705, Vietnam
[4] Elect Power Univ, Fac Informat Technol, Hanoi 100000, Vietnam
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 01期
关键词
microgrid; distributed power supply; enhanced sparrow search algorithm; economical operation; BAT ALGORITHM; PROTECTION; GRIDS;
D O I
10.3390/sym14010168
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microgrid operations planning is crucial for emerging energy microgrids to enhance the share of clean energy power generation and ensure a safe symmetry power grid among distributed natural power sources and stable functioning of the entire power system. This paper suggests a new improved version (namely, ESSA) of the sparrow search algorithm (SSA) based on an elite reverse learning strategy and firefly algorithm (FA) mutation strategy for the power microgrid optimal operations planning. Scheduling cycles of the microgrid with a distributed power source's optimal output and total operation cost is modeled based on variables, e.g., environmental costs, electricity interaction, investment depreciation, and maintenance system, to establish grid multi-objective economic optimization. Compared with other literature methods, such as Genetic algorithm (GA), Particle swarm optimization (PSO), Firefly algorithm (FA), Bat algorithm (BA), Grey wolf optimization (GWO), and SSA show that the proposed plan offers higher performance and feasibility in solving microgrid operations planning issues.
引用
收藏
页数:21
相关论文
共 29 条
[1]   Firefly Algorithm Optimized Robust Protection Scheme for DC Microgrid [J].
Amamra, Sid-Ali ;
Ahmed, Hafiz ;
El-Sehiemy, Ragab A. .
ELECTRIC POWER COMPONENTS AND SYSTEMS, 2017, 45 (10) :1141-1151
[2]  
Basset M. A., 2018, P COMP INT MULT BIG, P185, DOI [10.1016/B978-0-12-813314-9.00010-4, DOI 10.1016/B978-0-12-813314-9.00010-4, DOI 10.1016/B978-0-12-813314-9.00010-4.Z.B.T.-C.I]
[3]   Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices [J].
Baziar, Aliasghar ;
Kavousi-Fard, Abdollah .
RENEWABLE ENERGY, 2013, 59 :158-166
[4]   Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system [J].
Cabrera-Tobar, Ana ;
Bullich-Massague, Eduard ;
Aragues-Penalba, Monica ;
Gomis-Bellmunt, Oriol .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 62 :971-987
[5]   Evolved Bat Algorithm for Solving the Economic Load Dispatch Problem [J].
Dao, Thi-Kien ;
Pan, Tien-Szu ;
Trong-The Nguyen ;
Chu, Shu-Chuan .
GENETIC AND EVOLUTIONARY COMPUTING, 2015, 329 :109-119
[6]  
Dorigo M., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1470, DOI 10.1109/CEC.1999.782657
[7]   Microgrids: Architectures, Controls, Protection, and Demonstration [J].
Fu, Qiang ;
Nasiri, Adel ;
Solanki, Ashishkumar ;
Bani-Ahmed, Abedalsalam ;
Weber, Luke ;
Bhavaraju, Vijay .
ELECTRIC POWER COMPONENTS AND SYSTEMS, 2015, 43 (12) :1453-1465
[8]   Reverse learning and the physiological basis of eye movement desensitization [J].
Hassard, A .
MEDICAL HYPOTHESES, 1996, 47 (04) :277-282
[9]   A Survey of Evolutionary Algorithms for Clustering [J].
Hruschka, Eduardo Raul ;
Campello, Ricardo J. G. B. ;
Freitas, Alex A. ;
de Carvalho, Andre C. Ponce Leon F. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2009, 39 (02) :133-155
[10]  
[黄文焘 Huang Wentao], 2012, [电力系统保护与控制, Power System Protection and Control], V40, P149