Vortex flows on closed surfaces

被引:10
作者
Bogatskiy, A. [1 ]
机构
[1] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
关键词
incompressible fluids; coarse-graining; vortex matter; Coulomb gas; 2-DIMENSIONAL EULER EQUATIONS; STATISTICAL-MECHANICS; STATIONARY FLOWS; COADJOINT ORBITS; DIMENSIONS; VORTICES; MOTION; STABILITY;
D O I
10.1088/1751-8121/ab4e6a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the bulk hydrodynamics of the chiral vortex matter on an arbitrary closed surface, extending the ideas of Khalatnikov (1989 Advanced Book Classics (Redwood City, CA: Addison-Wesley); Wiegmann and Abanov (2014 Phys. Rev. Lett. 113 034501). Placing this important example of a chiral medium onto a curved geometry reveals the geometric nature of odd viscosity. The anomalous odd viscosity of the vortex matter is associated with a special interaction of point vortices with curvature.
引用
收藏
页数:23
相关论文
共 43 条
[31]   COADJOINT ORBITS, VORTICES, AND CLEBSCH VARIABLES FOR INCOMPRESSIBLE FLUIDS [J].
MARSDEN, J ;
WEINSTEIN, A .
PHYSICA D, 1983, 7 (1-3) :305-323
[32]   STATISTICAL-MECHANICS OF NEGATIVE TEMPERATURE STATES [J].
MONTGOMERY, D ;
JOYCE, G .
PHYSICS OF FLUIDS, 1974, 17 (06) :1139-1145
[33]  
Ricciardi Tonia., 1998, DIFFER INTEGRAL EQU, V11, P745
[34]  
Routh E. J., 1881, Proc. Lond. Math. Soc, V12, P73
[35]  
Saffman P G, 1992, CAMBRIDGE MONOGRAPHS, DOI [10.1002/zamm.19940740805, DOI 10.1002/ZAMM.19940740805]
[36]  
Schiffer M., 1954, Functionals of Finite Riemann Surfaces
[37]  
SONTAG A, 1975, ARCH RATION MECH AN, V59, P257, DOI 10.1007/BF00251603
[38]  
Taniguchi M., 1989, Kyoto J. Math, V29, P591, DOI DOI 10.1215/KJM/1250520175
[39]   ON THE EVOLUTION OF A CONCENTRATED VORTEX IN AN IDEAL FLUID [J].
TURKINGTON, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 97 (01) :75-87
[40]   Vortices on curved surfaces [J].
Turner, Ari M. ;
Vitelli, Vincenzo ;
Nelson, David R. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1301-1348