Fast ignition when heating the central part of an inertial confinement fusion target by an ion beam

被引:8
作者
Gus'kov, S. Yu [1 ,2 ]
Zmitrenko, N. V. [3 ]
Il'in, D. V. [4 ]
Sherman, V. E. [4 ]
机构
[1] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[2] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[3] Russian Acad Sci, MV Keldysh Appl Math Inst, Moscow 125047, Russia
[4] St Petersburg State Tech Univ, St Petersburg 195251, Russia
基金
俄罗斯基础研究基金会;
关键词
HIGH-GAIN; PLASMA; ICF; PARAMETERS; FUEL;
D O I
10.1134/S1063776114110077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the ignition and burning of a precompressed laser fusion target when it is rapidly heated by an ion beam with the formation of a temperature peak in the central part of the target. We present the results of our comprehensive numerical simulations of the problem that include the following components: (1) the target compression under the action of a profiled laser pulse, (2) the heating of the compressed target with spatially nonuniform density and temperature distributions by a beam of high-energy ions, and (3) the burning of the target with the initial spatial density distribution formed at the instant of maximum target compression and the initial spatial temperature distribution formed as a result of the compressed-target heating by an ion beam. The dependences of the threshold energies of the igniting ion beam and the thermonuclear gain on the width of the Gaussian beam ion energy spectrum have been established. The peculiarities of fast ignition by an ion beam related to the spatial distribution of parameters for the target precompressed by a laser pulse are discussed.
引用
收藏
页码:958 / 970
页数:13
相关论文
共 47 条
[31]   Irradiation uniformity of directly driven inertial confinement fusion targets in the context of the shock-ignition scheme [J].
Temporal, M. ;
Ramis, R. ;
Canaud, B. ;
Brandon, V. ;
Laffite, S. ;
Le Garrec, B. J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
[32]   The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion [J].
Perkins, L. J. ;
Ho, D. D. -M ;
Logan, B. G. ;
Zimmerman, G. B. ;
Rhodes, M. A. ;
Strozzi, D. J. ;
Blackfield, D. T. ;
Hawkins, S. A. .
PHYSICS OF PLASMAS, 2017, 24 (06)
[33]   Numerical simulation on a new cylindrical target for Z-pinch driven inertial confinement fusion [J].
Chu, Y. Y. ;
Wang, Z. ;
Qi, J. M. ;
Wu, F. Y. ;
Li, Z. H. .
NUCLEAR FUSION, 2017, 57 (06)
[34]   Tungsten doped diamond shells for record neutron yield inertial confinement fusion experiments at the National Ignition Facility [J].
Braun, T. ;
Kucheyev, S. O. ;
Shin, S. J. ;
Wang, Y. M. ;
Ye, J. ;
Teslich, N. E., Jr. ;
Saw, C. K. ;
Bober, D. B. ;
Sedillo, E. M. ;
Rice, N. G. ;
Sequoia, K. ;
Huang, H. ;
Requieron, W. ;
Nikroo, A. ;
Ho, D. D. ;
Haan, S. W. ;
Hamza, A. V. ;
Wild, C. ;
Biener, J. .
NUCLEAR FUSION, 2023, 63 (01)
[35]   Direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics:: charting the path to thermonuclear ignition [J].
McCrory, RL ;
Regan, SP ;
Loucks, SJ ;
Meyerhofer, DD ;
Skupsky, S ;
Betti, R ;
Boehly, TR ;
Craxton, RS ;
Collins, TJB ;
Delettrez, JA ;
Edgell, D ;
Epstein, R ;
Fletcher, KA ;
Freeman, C ;
Frenje, JA ;
Glebov, VY ;
Goncharov, VN ;
Harding, DR ;
Igumenshchev, I ;
Keck, RL ;
Kilkenny, JD ;
Knauer, JP ;
Li, CK ;
Marciante, J ;
Marozas, JA ;
Marshall, FJ ;
Maximov, AV ;
McKenty, PW ;
Myatt, J ;
Padalino, S ;
Petrasso, RD ;
Radha, PB ;
Sangster, TC ;
Séguin, FH ;
Seka, W ;
Smalyuk, VA ;
Soures, JM ;
Stoeckl, C ;
Yaakobi, B ;
Zuegel, JD .
NUCLEAR FUSION, 2005, 45 (10) :S283-S290
[36]   Effects of alpha stopping power modelling on the ignition threshold in a directly-driven inertial confinement fusion capsule [J].
Temporal, Mauro ;
Canaud, Benoit ;
Cayzac, Witold ;
Ramis, Rafael ;
Singleton, Robert L., Jr. .
EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (05)
[37]   Kinetic simulations of stimulated Raman backscattering and related processes for the shock-ignition approach to inertial confinement fusion [J].
Riconda, C. ;
Weber, S. ;
Tikhonchuk, V. T. ;
Heron, A. .
PHYSICS OF PLASMAS, 2011, 18 (09)
[38]   Studies on virtual electrode and ion sheath characteristics in a cylindrical inertial electrostatic confinement fusion device [J].
Bhattacharjee, D. ;
Jigdung, D. ;
Buzarbaruah, N. ;
Mohanty, S. R. ;
Bailung, H. .
PHYSICS OF PLASMAS, 2019, 26 (07)
[39]   A stationary multi-component cathode modeling and ion trajectories for an inertial electrostatic confinement fusion device [J].
Kurt, Erol .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (02) :89-95
[40]   Reduction in inertial confinement fusion ignition energy of 3He-3He plasma by laser-accelerated deuterons [J].
Bahmani, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (33) :16672-16676