A comparison between two competing fixed parameter constrained general linear models with new regressors

被引:8
作者
Lu, Changli [1 ]
Sun, Yuqin [1 ]
Tian, Yongge [2 ,3 ]
机构
[1] Shanghai Maritime Univ, Coll Econ & Management, Shanghai, Peoples R China
[2] Shanghai Business Sch, Shanghai, Peoples R China
[3] Cent Univ Finance & Econ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
General linear models; linear restriction; new regressor; BLUE; decomposition identity; GAUSS-MARKOV MODEL; SUPERFLUOUS VARIABLES; ADDING REGRESSORS; RESTRICTIONS; INCLUSION; MATRIX; ESTIMABILITY; ESTIMATOR; MISSPECIFICATION; RANK;
D O I
10.1080/02331888.2018.1469021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Assume that two competing general linear models with fixed coefficients and identical parameter restrictions are given by adding new or deleting existing unknown parameters. In this situation, estimators of the parametric functions in the contexts of the two competing models are not necessarily the same. We consider the relationships between the best linear unbiased estimators (BLUEs) of parametric functions under these two competing constricted general linear models, and derive necessary and sufficient conditions for their BLUEs to be equal.
引用
收藏
页码:769 / 781
页数:13
相关论文
共 35 条
[1]   CHARACTERIZATIONS OF ESTIMABILITY IN THE GENERAL LINEAR-MODEL [J].
ALALOUF, IS ;
STYAN, GPH .
ANNALS OF STATISTICS, 1979, 7 (01) :194-200
[2]  
Baksalary J. K., 1979, Mathematische Operationsforschung und Statistik, Series Statistics, V10, P27, DOI 10.1080/02331887908801464
[3]   INVERSE-PARTITIONED-MATRIX METHOD FOR THE GENERAL GAUSS-MARKOV MODEL WITH LINEAR RESTRICTIONS [J].
BAKSALARY, JK ;
PORDZIK, PR .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1989, 23 (02) :133-143
[4]  
Baksalary JK., 1984, MATH OPERATIONSFOR S, V15, P3, DOI DOI 10.1080/02331888408801743
[5]   UPDATES OF STATISTICS IN A GENERAL LINEAR-MODEL - A STATISTICAL INTERPRETATION AND APPLICATIONS [J].
BHIMASANKARAM, P ;
JAMMALAMADAKA, SR .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1994, 23 (03) :789-801
[6]  
Bunke H., 1974, MATH OPERATIONSFORSC, V5, P223, DOI DOI 10.1080/02331887408801160
[7]  
Drygas H., 1970, COORDINATE FREE APPR
[8]   Mixed regression estimator under inclusion of some superfluous variables [J].
Dube, M .
TEST, 1999, 8 (02) :411-418
[9]   STEIN-RULE ESTIMATOR UNDER INCLUSION OF SUPERFLUOUS VARIABLES IN LINEAR-REGRESSION MODELS [J].
DUBE, M ;
SRIVASTAVA, VK ;
TOUTENBURG, H ;
WIJEKOON, P .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (07) :2009-2022
[10]  
Hallum CR., 1973, COMMUN STAT, V1, P157, DOI DOI 10.1080/03610917308548418