Deep learning for image-based cancer detection and diagnosis - A survey

被引:302
作者
Hu, Zilong [1 ]
Tang, Jinshan [1 ,2 ,3 ]
Wang, Ziming [2 ]
Zhang, Kai [1 ,3 ]
Zhang, Ling [1 ]
Sun, Qingling [4 ]
机构
[1] Michigan Technol Univ, Sch Technol, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Dept Elect & Comp Engn, Houghton, MI 49931 USA
[3] Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan 430065, Hubei, Peoples R China
[4] Sun Technol & Serv LLC, Clinton, MS 39056 USA
基金
美国国家卫生研究院;
关键词
BRAIN-TUMOR SEGMENTATION; CONVOLUTIONAL NEURAL-NETWORK; COMPUTER-AIDED DIAGNOSIS; FALSE-POSITIVE REDUCTION; LUNG NODULE; MITOSIS DETECTION; CLASSIFICATION; ALGORITHMS; DATABASE; MASSES;
D O I
10.1016/j.patcog.2018.05.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we aim to provide a survey on the applications of deep learning for cancer detection and diagnosis and hope to provide an overview of the progress in this field. In the survey, we firstly provide an overview on deep learning and the popular architectures used for cancer detection and diagnosis. Especially we present four popular deep learning architectures, including convolutional neural networks, fully convolutional networks, auto-encoders, and deep belief networks in the survey. Secondly, we provide a survey on the studies exploiting deep learning for cancer detection and diagnosis. The surveys in this part are organized based on the types of cancers. Thirdly, we provide a summary and comments on the recent work on the applications of deep learning to cancer detection and diagnosis and propose some future research directions. (C) 2018 Published by Elsevier Ltd.
引用
收藏
页码:134 / 149
页数:16
相关论文
共 143 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images
    Albarqouni, Shadi
    Baur, Christoph
    Achilles, Felix
    Belagiannis, Vasileios
    Demirci, Stefanie
    Navab, Nassir
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1313 - 1321
  • [3] Albayrak A, 2016, INT SYMP COMP INTELL, P335, DOI 10.1109/CINTI.2016.7846429
  • [4] KAZE Features
    Alcantarilla, Pablo Fernandez
    Bartoli, Adrien
    Davison, Andrew J.
    [J]. COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 214 - 227
  • [5] [Anonymous], SPIE MED IMAGING
  • [6] [Anonymous], SPIE MED IMAGING
  • [7] [Anonymous], 2016, ARXIV PREPRINT ARXIV
  • [8] [Anonymous], ATLAS CLIN DERMATOLO
  • [9] [Anonymous], SPIE MED IMAGING
  • [10] [Anonymous], 2015, ONCOTARGETS THERAPY