Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrodinger equation

被引:53
作者
Abdullaev, F. Kh.
Bouketir, A.
Messikh, A.
Umarov, B. A.
机构
[1] Uzbek Acad Sci, Phys Tech Inst, Tashkent 700084, Uzbekistan
[2] Int Islam Univ Maalaysia, Fac Engn, Dept Engn Sci, Kuala Lumpur 50728, Malaysia
[3] Int Islam Univ Maalaysia, Fac Sci, Dept Computat & Theroret Sci, Kuala Lumpur 50728, Malaysia
基金
巴西圣保罗研究基金会;
关键词
modulational instability; discrete breather; discrete nonlinear; Schrodinger equation; stability;
D O I
10.1016/j.physd.2007.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the properties of modulational instability and discrete breathers in the cubic-quintic discrete nonlinear Schrodinger equation. We analyze the regions of modulational instabilities of nonlinear plane waves. Using the Page approach [J.B. Page, Phys. Rev. B 41 (1990) 7835], we derive the conditions for the existence and stability for bright discrete breather solutions. It is shown that the quintic nonlinearity brings qualitatively new conditions for stability of strongly localized modes. The application to the existence of localized modes in the Bose-Einstein condensate (BEQ with three-body interactions in an optical lattice is discussed. The numerical simulations agree with the analytical predictions. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 61
页数:8
相关论文
共 35 条
[21]  
KEVREKIDIS PG, ARXIVENLIN0603046
[22]   Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities [J].
Khare, Avinash ;
Rasmussen, Kim O. ;
Salerno, Mario ;
Samuelsen, Mogens R. ;
Saxena, Avadh .
PHYSICAL REVIEW E, 2006, 74 (01)
[23]   Introduction: Nonlinear localized modes [J].
Kivshar, YS ;
Flach, S .
CHAOS, 2003, 13 (02) :586-587
[24]  
Lederer F., 2001, Nonlinearity and Disorder: Theory and Applications. NATO Advanced Research Workshop entitled Nonlinearity and Disorder: Theory and Applications, P131
[25]   Dynamics of Bose-Einstein condensates in optical lattices [J].
Morsch, O ;
Oberthaler, M .
REVIEWS OF MODERN PHYSICS, 2006, 78 (01) :179-215
[26]   ASYMPTOTIC SOLUTIONS FOR LOCALIZED VIBRATIONAL-MODES IN STRONGLY ANHARMONIC PERIODIC-SYSTEMS [J].
PAGE, JB .
PHYSICAL REVIEW B, 1990, 41 (11) :7835-7838
[27]   Matter-wave solitons in nonlinear optical lattices [J].
Sakaguchi, H ;
Malomed, BA .
PHYSICAL REVIEW E, 2005, 72 (04)
[28]   Direct observation of the discrete character of intrinsic localized modes in an antiferromagnet [J].
Sato, M ;
Sievers, AJ .
NATURE, 2004, 432 (7016) :486-488
[29]   Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array [J].
Sato, M ;
Hubbard, BE ;
Sievers, AJ ;
Ilic, B ;
Czaplewski, DA ;
Craighead, HG .
PHYSICAL REVIEW LETTERS, 2003, 90 (04) :4
[30]   Nonlinear tight-binding approximation for Bose-Einstein condensates in a lattice [J].
Smerzi, A ;
Trombettoni, A .
PHYSICAL REVIEW A, 2003, 68 (02) :8