Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrodinger equation

被引:53
作者
Abdullaev, F. Kh.
Bouketir, A.
Messikh, A.
Umarov, B. A.
机构
[1] Uzbek Acad Sci, Phys Tech Inst, Tashkent 700084, Uzbekistan
[2] Int Islam Univ Maalaysia, Fac Engn, Dept Engn Sci, Kuala Lumpur 50728, Malaysia
[3] Int Islam Univ Maalaysia, Fac Sci, Dept Computat & Theroret Sci, Kuala Lumpur 50728, Malaysia
基金
巴西圣保罗研究基金会;
关键词
modulational instability; discrete breather; discrete nonlinear; Schrodinger equation; stability;
D O I
10.1016/j.physd.2007.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the properties of modulational instability and discrete breathers in the cubic-quintic discrete nonlinear Schrodinger equation. We analyze the regions of modulational instabilities of nonlinear plane waves. Using the Page approach [J.B. Page, Phys. Rev. B 41 (1990) 7835], we derive the conditions for the existence and stability for bright discrete breather solutions. It is shown that the quintic nonlinearity brings qualitatively new conditions for stability of strongly localized modes. The application to the existence of localized modes in the Bose-Einstein condensate (BEQ with three-body interactions in an optical lattice is discussed. The numerical simulations agree with the analytical predictions. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 61
页数:8
相关论文
共 35 条
[1]   Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices [J].
Abdullaev, Fatkhulla ;
Abdumalikov, Abdulaziz ;
Galimzyanov, Ravil .
PHYSICS LETTERS A, 2007, 367 (1-2) :149-155
[2]   Intrinsic localized modes in arrays of atomic-molecular Bose-Einstein condensates [J].
Abdullaev, FK ;
Konotop, VV .
PHYSICAL REVIEW A, 2003, 68 (01) :5
[3]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[4]  
Abdullaev FK, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.043604
[5]  
ABDULLAEV FK, 2002, PROGR OPTICS, V42, P301
[6]   Bose-Einstein condensation of atoms with attractive interaction [J].
Akhmediev, N ;
Das, MP ;
Vagov, AV .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (5-6) :625-631
[7]   Stationary localized modes of the quintic nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, G. L. ;
Konotop, V. V. ;
Pacciani, P. .
PHYSICAL REVIEW A, 2007, 75 (02)
[8]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[9]   Theory of nonlinear matter waves in optical lattices [J].
Brazhnyi, VA ;
Konotop, VV .
MODERN PHYSICS LETTERS B, 2004, 18 (14) :627-651
[10]   LOCALIZED STATES IN DISCRETE NONLINEAR SCHRODINGER-EQUATIONS [J].
CAI, D ;
BISHOP, AR ;
GRONBECHJENSEN, N .
PHYSICAL REVIEW LETTERS, 1994, 72 (05) :591-595