An image classification deep-learning algorithm for shrapnel detection from ultrasound images

被引:22
|
作者
Snider, Eric J. [1 ]
Hernandez-Torres, Sofia, I [1 ]
Boice, Emily N. [1 ]
机构
[1] US Army Inst Surg Res, Engn Technol & Automat Combat Casualty Care Res T, Ft Sam Houston, TX 78234 USA
关键词
REAL-TIME DETECTION; THYROID-NODULES; PLATFORM;
D O I
10.1038/s41598-022-12367-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ultrasound imaging is essential for non-invasively diagnosing injuries where advanced diagnostics may not be possible. However, image interpretation remains a challenge as proper expertise may not be available. In response, artificial intelligence algorithms are being investigated to automate image analysis and diagnosis. Here, we highlight an image classification convolutional neural network for detecting shrapnel in ultrasound images. As an initial application, different shrapnel types and sizes were embedded first in a tissue mimicking phantom and then in swine thigh tissue. The algorithm architecture was optimized stepwise by minimizing validation loss and maximizing F1 score. The final algorithm design trained on tissue phantom image sets had an F1 score of 0.95 and an area under the ROC curve of 0.95. It maintained higher than a 90% accuracy for each of 8 shrapnel types. When trained only on swine image sets, the optimized algorithm format had even higher metrics: F1 and area under the ROC curve of 0.99. Overall, the algorithm developed resulted in strong classification accuracy for both the tissue phantom and animal tissue. This framework can be applied to other trauma relevant imaging applications such as internal bleeding to further simplify trauma medicine when resources and image interpretation are scarce.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An image classification deep-learning algorithm for shrapnel detection from ultrasound images
    Eric J. Snider
    Sofia I. Hernandez-Torres
    Emily N. Boice
    Scientific Reports, 12
  • [2] Comparison of Ultrasound Image Classifier Deep Learning Algorithms for Shrapnel Detection
    Boice, Emily N.
    Hernandez-Torres, Sofia, I
    Snider, Eric J.
    JOURNAL OF IMAGING, 2022, 8 (05)
  • [3] Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm
    Ji Young Lee
    Jong Soo Kim
    Tae Yoon Kim
    Young Soo Kim
    Scientific Reports, 10
  • [4] Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm
    Lee, Ji Young
    Kim, Jong Soo
    Kim, Tae Yoon
    Kim, Young Soo
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Training Ultrasound Image Classification Deep-Learning Algorithms for Pneumothorax Detection Using a Synthetic Tissue Phantom Apparatus
    Boice, Emily N.
    Torres, Sofia I. Hernandez
    Knowlton, Zechariah J.
    Berard, David
    Gonzalez, Jose M.
    Avital, Guy
    Snider, Eric J.
    JOURNAL OF IMAGING, 2022, 8 (09)
  • [6] A Deep-learning based Method for the Classification of the Cellular Images
    Vununu, Caleb
    Lee, Suk-Hwan
    Kwon, Ki-Ryong
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2020, : 242 - 245
  • [7] Deep learning based detection and classification of fetal lip in ultrasound images
    Li, Yapeng
    Cai, Peiya
    Huang, Yubing
    Yu, Weifeng
    Liu, Zhonghua
    Liu, Peizhong
    JOURNAL OF PERINATAL MEDICINE, 2024, 52 (07) : 769 - 777
  • [8] Comparison of different deep-learning methods for image classification
    Szyc, Kamil
    2018 IEEE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS (INES 2018), 2018, : 341 - 346
  • [9] Deep-Learning Based Segmentation Algorithm for Defect Detection in Magnetic Particle Testing Images
    Ueda, Akira
    Lu, Huimin
    Kamiya, Tohru
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : 235 - 238
  • [10] Classification of Photographed Document Images Based on Deep-Learning Features
    Zhong, Guoqiang
    Yao, Hui
    Liu, Yutong
    Hong, Chen
    Pham, Tuan
    EIGHTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2016), 2017, 10225