Expanding the Exploration of the Criterion Space for Multi-Objective Optimal Control Problems

被引:0
作者
Vallerio, Mattia [1 ]
Vercammen, Dominique [1 ]
Van Impe, Jan [1 ]
Logist, Filip [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem Engn, B-3001 Leuven Heverlee, Belgium
来源
2014 EUROPEAN CONTROL CONFERENCE (ECC) | 2014年
关键词
NORMAL CONSTRAINT METHOD; PARETO FRONTIER; OPTIMIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A wide range of optimal control problems present multiple and conflicting objectives that need to be optimized at the same time. However, this multi-objective nature is most often neglected and typically it is tackled by constructing a global objective function consisting of a Weighted Sum (WS) of the single objectives. Unfortunately, this approach fails to present practitioners with a complete representation of the underlined trade-offs between the considered objectives. Multi-objective optimization proved to be a powerful tool to correctly describe these trade-offs in a set of optimal solutions known as the Pareto set. In this paper a new method to solve multi-objective optimal control problems based on geometric considerations is introduced. The method returns a wider Pareto set when compared to the methods available, hence improving the quality of the achieved solution. The proposed method is applied to the optimal control and design of a tubular reactor.
引用
收藏
页码:1236 / 1241
页数:6
相关论文
共 15 条
[1]  
Andersson J., 2012, RECENT ADV ALGORITHM, V87, P297, DOI [DOI 10.1007/978-3-642-30023-3_, DOI 10.1007/978-3-642-30023-3_27, 10.1007/978-3-642-30023-3_27]
[2]   Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems [J].
Das, I ;
Dennis, JE .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (03) :631-657
[3]   Centroidal Voronoi tessellations: Applications and algorithms [J].
Du, Q ;
Faber, V ;
Gunzburger, M .
SIAM REVIEW, 1999, 41 (04) :637-676
[4]   Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation [J].
Kim, IY ;
de Weck, OL .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2006, 31 (02) :105-116
[5]   Multi-objective optimal control of chemical processes using ACADO toolkit [J].
Logist, F. ;
Vallerio, M. ;
Houska, B. ;
Diehl, M. ;
Van Impe, J. .
COMPUTERS & CHEMICAL ENGINEERING, 2012, 37 :191-199
[6]   Optimal design of dispersive tubular reactors at steady-state using optimal control theory [J].
Logist, F. ;
Van Erdeghem, P. M. M. ;
Smets, I. Y. ;
Van Impe, J. F. .
JOURNAL OF PROCESS CONTROL, 2009, 19 (07) :1191-1198
[7]   Fast Pareto set generation for nonlinear optimal control problems with multiple objectives [J].
Logist, Filip ;
Houska, Boris ;
Diehl, Moritz ;
Van Impe, Jan .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 42 (04) :591-603
[8]  
Lyra P. R. M., 2012, STRUCTURAL MULTIDISC, V46, P239
[9]   Survey of multi-objective optimization methods for engineering [J].
Marler, RT ;
Arora, JS .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2004, 26 (06) :369-395
[10]   Normal constraint method with guarantee of even representation of complete Pareto frontier [J].
Messac, A ;
Mattson, CA .
AIAA JOURNAL, 2004, 42 (10) :2101-2111