Existence and nonexistence of global solutions for a class of nonlinear wave equations of higher order

被引:23
作者
Wang, Yu-Zhu [1 ,2 ]
Wang, Yin-Xia [1 ]
机构
[1] N China Univ Water Resources & Elect Power, Sch Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Nonlinear wave equation of higher order; Cauchy problem; Existence of global solutions; GENERALIZED BOUSSINESQ EQUATION; HYPERBOLIC EQUATIONS; INSTABILITY; DYNAMICS;
D O I
10.1016/j.na.2010.02.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence and uniqueness of the solution to the Cauchy problem for a class of nonlinear wave equations of higher order and prove the existence and nonexistence of global solutions to this problem by a potential well method. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4500 / 4507
页数:8
相关论文
共 13 条
[1]   The dynamics of a nonlinear wave equation [J].
Esquivel-Avila, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (01) :135-150
[2]  
GODEFROY AD, 1998, IMA J APPL MATH, V60, P123
[3]  
[韩献军 Han Xianjun], 2007, [数学物理学报. A辑, Acta Mathematica Scientia], V27, P624
[5]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[7]  
Liu Y., 2003, J DIFFER EQUATIONS, V192, P109
[8]   EXISTENCE OF GLOBAL-SOLUTIONS TO THE CAUCHY-PROBLEM FOR THE SEMILINEAR DISSIPATIVE WAVE-EQUATIONS [J].
NAKAO, M ;
ONO, K .
MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (02) :325-342
[9]   SADDLE POINTS AND INSTABILITY OF NONLINEAR HYPERBOLIC EQUATIONS [J].
PAYNE, LE ;
SATTINGER, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (3-4) :273-303
[10]   DYNAMICS OF DENSE LATTICES [J].
ROSENAU, P .
PHYSICAL REVIEW B, 1987, 36 (11) :5868-5876