BIOTRANSFORMATION OF C-5 AND C-6 SUGARS OF CELLULOSIC COTTON WASTES TO BIOETHANOL THROUGH PHYSICAL AND ENZYMATIC MODES

被引:2
作者
Rajalakshmi, V [1 ]
Karthiksundaram, S. [1 ]
Poornima, D. [1 ]
Rajendran, R. [1 ]
机构
[1] PSG Coll Arts & Sci, Dept Microbiol, Coimbatore 641014, Tamil Nadu, India
来源
APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH | 2016年 / 14卷 / 02期
关键词
cotton waste; SSF; cellulase production; pre-treatment; Box-Behnken design; ethanol; LIGNOCELLULOSIC WASTES; BIO-ETHANOL; PRETREATMENT; HYDROLYSIS; FUEL; SACCHARIFICATION; ENHANCEMENT; CONVERSION; BIOMASS;
D O I
10.15666/aeer/1402_411420
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The present research focuses on the feasibility of utilizing cotton waste for energy resurgence after physical and biological pretreatment followed by simultaneous saccharification and fermentation processes (SSF). The cotton waste was pretreated with microwave irradiation (MW) and subsequently subjected to enzymatic hydrolysis for the release of sugars utilizing the cellulase enzyme producer Trichoderma reesei (MTCC 164). Based on Box-Behnken design, pH, temperature and hydrolysis time period were selected as the most significant variables for the production of cellulase. The simultaneous fermentation and enzymatic saccharification (SSF) of pretreated substrate with immobilized Saccharomyces cerevisiae (MTCC 172) yielded 2.65%, 1.48% and 1.32% of ethanol with hard waste, carding waste and cotton seed waste, respectively. The findings suggest that these cotton wastes can be used effectively for the ethanol production.
引用
收藏
页码:411 / 420
页数:10
相关论文
共 31 条
[1]   Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review [J].
Alvira, P. ;
Tomas-Pejo, E. ;
Ballesteros, M. ;
Negro, M. J. .
BIORESOURCE TECHNOLOGY, 2010, 101 (13) :4851-4861
[2]  
ASTM (American Standards Test Methods), 1995, E172195 ASTM
[3]  
AZUMA JI, 1984, J FERMENT TECHNOL, V62, P377
[4]   Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: Comparison between artificial neural network and response surface methodology [J].
Das, S. ;
Bhattacharya, A. ;
Haldar, S. ;
Ganguly, A. ;
Gu, Sai ;
Ting, Y. P. ;
Chatterjee, P. K. .
SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2015, 3 :17-28
[5]   Effect of immobilized cells in calcium alginate beads in alcoholic fermentation [J].
Duarte, Juliana C. ;
Rodrigues, J. Augusto R. ;
Moran, Paulo J. S. ;
Valenca, Gustavo P. ;
Nunhez, Jose R. .
AMB EXPRESS, 2013, 3 :1-8
[6]  
Elkund R., 1995, ENZYME MICROBIAL TEC, V17, P255
[7]   A review of the production of ethanol from softwood [J].
Galbe, M ;
Zacchi, G .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 59 (06) :618-628
[8]   Bio-ethanol -: the fuel of tomorrow from the residues of today [J].
Hahn-Hagerdal, B. ;
Galbe, M. ;
Gorwa-Grauslund, M. F. ;
Liden, G. ;
Zacchi, G. .
TRENDS IN BIOTECHNOLOGY, 2006, 24 (12) :549-556
[9]  
Hasunuma T., 2012, PROCESS BIOCHEM, V47, P95
[10]   Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment [J].
Hu, Zhenhu ;
Wen, Zhiyou .
BIOCHEMICAL ENGINEERING JOURNAL, 2008, 38 (03) :369-378