Chromium terephthalate metal-organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis

被引:244
作者
Bhattacharjee, Samiran [1 ]
Chen, Chao [1 ,2 ]
Ahn, Wha-Seung [1 ]
机构
[1] Inha Univ, Dept Chem & Chem Engn, Inchon 402751, South Korea
[2] Xinyang Normal Univ, Coll Chem & Chem Engn, Xinyang 464000, Henan Province, Peoples R China
关键词
LIQUID-CHROMATOGRAPHIC SEPARATION; HYDROGEN STORAGE PERFORMANCE; POROUS MATERIAL MIL-101(CR); HIGH PROTON CONDUCTIVITY; HIGH-SURFACE-AREA; ONE-POT SYNTHESIS; PD NANOPARTICLES; CARBON-DIOXIDE; CO2; CAPTURE; SELECTIVE OXIDATION;
D O I
10.1039/c4ra11259h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The chromium terephthalate metal-organic framework, MIL-101 (MIL, Material Institut Lavoisier), is comprised of trimeric chromium(III) octahedral clusters interconnected by 1,4-benzenedicarboxylates, resulting in a highly porous 3-dimentional structure. The large pores (29 and 34 angstrom) and high BET surface area (>3000 m(2) g(-1)) with a huge cell volume (approximate to 702 000 angstrom(3)) together with the coordinatively unsaturated open metal sites that can be subjected to diverse post-synthesis functionalization or guest encapsulation, and excellent hydrothermal/chemical stability, make MIL-101 particularly attractive for applications, such as selective gas adsorption/separation, energy storage and heterogeneous catalysis. This paper reviews the current status of research and development on the synthesis, functionalization and applications of MIL-101 for adsorption/catalytic reactions.
引用
收藏
页码:52500 / 52525
页数:26
相关论文
共 50 条
[31]   Metal Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation [J].
Chen, Y. F. ;
Babarao, R. ;
Sandler, S. I. ;
Jiang, J. W. .
LANGMUIR, 2010, 26 (11) :8743-8750
[32]   Ionic conductivity of tetra-n-butylammonium tetrafluoroborate in the MIL-101(Cr) metal-organic framework [J].
Ulikhin, Artem S. ;
Uvarov, Nikolai F. ;
Kovalenko, Konstantin A. ;
Fedin, Vladimir P. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 332
[33]   Metal–organic framework MIL-101(Cr): an efficient catalyst for the synthesis of biphenyls and biphenyl diols [J].
Jenis Tripathi ;
Manisha Gupta ;
Anshul Yadav ;
Krishnakant Waghmode ;
Paresh More .
Research on Chemical Intermediates, 2024, 50 :1645-1660
[34]   Selective hydroformylation of olefins over the rhodium supported large porous metal-organic framework MIL-101 [J].
Toan Van Vu ;
Kosslick, Hendrik ;
Schulz, Axel ;
Harloff, Joerg ;
Paetzold, Eckhard ;
Schneider, Mathias ;
Radnik, Joerg ;
Steinfeldt, Norbert ;
Fulda, Gerhard ;
Kragl, Udo .
APPLIED CATALYSIS A-GENERAL, 2013, 468 :410-417
[35]   Urea-modified metal-organic framework of type MIL-101(Cr) for the preconcentration of phosphorylated peptides [J].
Yang, Xiaoqing ;
Xia, Yan .
MICROCHIMICA ACTA, 2016, 183 (07) :2235-2240
[36]   A kinetic study of facile fabrication of MIL-101(Cr) metal-organic framework: Effect of synthetic method [J].
Pourebrahimi, Sina ;
Kazemeini, Mohammad .
INORGANICA CHIMICA ACTA, 2018, 471 :513-520
[37]   Aldehyde-Alcohol Reactions Catalyzed under Mild Conditions by Chromium(III) Terephthalate Metal Organic Framework (MIL-101) and Phosphotungstic Acid Composites [J].
Bromberg, Lev ;
Hatton, T. Alan .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (12) :4756-4764
[38]   Epoxidation of styrene over Fe(Cr)-MIL-101 metal-organic frameworks [J].
Sun, Jian ;
Yu, Guangli ;
Huo, Qisheng ;
Kan, Qiubin ;
Guan, Jingqi .
RSC ADVANCES, 2014, 4 (72) :38048-38054
[39]   Benign Synthesis of Metal-organic Framework (MIL-101-Cr) and Evaluation of Carbon-dioxide Adsorption Behaviour Employing Adsorption Isotherm Models [J].
Singh, Ayushi ;
Kayal, Sibnath .
CURRENT ORGANIC SYNTHESIS, 2022, 19 (05) :673-684
[40]   Electrochemical behavior of metal-organic framework MIL-101 modified carbon paste electrode: An excellent candidate for electroanalysis [J].
Li, Yuzhi ;
Chao Huangfu ;
Du, Haijun ;
Liu, Wenbin ;
Li, Yingwei ;
Ye, Jianshan .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 709 :65-69