Nonparametric recursive density estimation for spatial data

被引:9
作者
Amiri, Aboubacar [1 ]
Dabo-Niang, Sophie [1 ,2 ]
Yahaya, Mohamed [1 ,3 ]
机构
[1] Univ Lille 3, Lab LEM CNRS 9221, F-59653 Villeneuve Dascq, France
[2] INRIA MODAL Team, Inria, France
[3] Univ Comores, FST, Moroni, Comoros
关键词
REGRESSION;
D O I
10.1016/j.crma.2015.10.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with non-parametric density estimation for spatial data. We study the asymptotic properties of a new recursive version of the Parzen-Rozenblatt estimator. The mean square error and an almost sure convergence result with rate of such estimator are derived. (C) 2015 Published by Elsevier Masson SAS on behalf of Academie des sciences.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 21 条
[1]   On a parametric family of sequential estimators of the density for a strong mixing process [J].
Amiri, Aboubacar .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (5-6) :309-314
[2]  
Biau G., 2004, Stat. Inference Stoch. Process, V7, P327, DOI [10.1023/B:SISP.0000049116.23705.88, DOI 10.1023/B:SISP.0000049116.23705.88]
[3]  
Blanke D., 2007, WILEY SERIES PROBABI
[4]   Kernel density estimation for random fields (density estimation for random fields) [J].
Carbon, M ;
Tran, LT ;
Wu, B .
STATISTICS & PROBABILITY LETTERS, 1997, 36 (02) :115-125
[5]  
Carbon M., 1996, J NONPARAMETR STAT, V6, P157
[6]  
Chiles JP., 1999, STAT SPATIAL DATA
[7]   GMM estimation with cross sectional dependence [J].
Conley, TG .
JOURNAL OF ECONOMETRICS, 1999, 92 (01) :1-45
[8]  
Cressie N., 2011, STAT SPATIO TEMPORAL, DOI DOI 10.1016/0034-4257(81)90021-3
[9]   Kernel regression estimation for continuous spatial processes [J].
Dabo-Niang S. ;
Yao A.-F. .
Mathematical Methods of Statistics, 2007, 16 (4) :298-317
[10]  
Deheuvels P., 1974, C R ACAD SCI PARIS A, V276, P1013