Electrical impedance spectroscopy of single cells in hydrodynamic traps

被引:32
|
作者
El Hasni, Akram [1 ]
Schmitz, Carlo [2 ]
Bui-Goebbels, Katrin [3 ]
Braeunig, Peter [3 ]
Jahnen-Dechent, Wilhelm [2 ]
Schnakenberg, Uwe [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Mat Elect Engn 1, Sommerfeldstr 24, D-52074 Aachen, Germany
[2] RWTH Aachen Univ Hosp, Helmholtz Inst Biomed Engn, Pauwelsstr 30, D-52074 Aachen, Germany
[3] Rhein Westfal TH Aachen, Inst Biol 2, Worringerweg 3, D-52074 Aachen, Germany
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2017年 / 248卷
关键词
Electrical impedance spectroscopy; Microfluidics; Single cells; Hydrodynamic trap; Mouse oocytes; DIELECTRIC-SPECTROSCOPY; MICROFLUIDIC TECHNIQUES; FLOW CYTOMETER; CHIP; ELECTRODES; MICROELECTRODES; POLYPYRROLE; MORPHOLOGY; CULTURE; SENSORS;
D O I
10.1016/j.snb.2017.04.019
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents a new design of a microfluidic device combining hydrodynamic trapping and impedance spectroscopy measurements of single cells. Four microelectrodes integrated within cell traps enable impedance measurements in varying electrode pair configurations. To improve the impedance response of the microelectrodes, a modification using electrodeposition of a conductive polymer was applied. A considerable decrease of impedance magnitude was observed, and thus a significant enhancement of the useful frequency range was obtained. After electrode modification, the 12 x 22 mu m(2) electrodes were sensitive for frequencies ranging from 10 KHz to 2-5 MHz. Impedance measurements were carried out on single mouse oocytes with and without the surrounding glycoprotein matrix, called zona pellucida. Higher impedance values were obtained for zona pellucida-free than for zona pellucida-intact oocytes, reflecting the known high electrical conductivity of the zona pellucida. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:419 / 429
页数:11
相关论文
共 50 条
  • [21] Electrical Impedance Spectroscopy Microflow Cytometer for cell viability tests
    Gonzalez-Murillo, J. J.
    Monge-Azemar, M.
    Bartoli, J.
    Flores, A.
    Moreno, M.
    Garcia-Celma, M.
    Romano-Rodriguez, A.
    Svendsen, W.
    Samitier, J.
    Rodriguez-Trujillo, R.
    PROCEEDINGS OF THE 2018 12TH SPANISH CONFERENCE ON ELECTRON DEVICES (CDE), 2018,
  • [22] Studying the Electrical Impedance Variations in Banana Ripening Using Electrical Impedance Spectroscopy (EIS)
    Chowdhury, A.
    Bera, T. K.
    Ghoshal, D.
    Chakraborty, B.
    2015 THIRD INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT), 2015,
  • [23] Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy
    Yao, Jiafeng
    Wang, Li
    Liu, Kai
    Wu, Hongtao
    Wang, Hao
    Huang, Jingshi
    Li, Jianping
    ELECTROPHORESIS, 2020, 41 (16-17) : 1425 - 1432
  • [24] UHT Milk Characterization by Electrical Impedance Spectroscopy
    Scandurra, Graziella
    Cardillo, Emanuele
    Ciofi, Carmine
    Ferro, Luigi
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [25] Highly selective and sensitive DNA measurement by micro electrical impedance spectroscopy
    Lee, SW
    Yamamoto, T
    Fujii, T
    Transducers '05, Digest of Technical Papers, Vols 1 and 2, 2005, : 1314 - 1317
  • [26] Fish Detection Using Electrical Impedance Spectroscopy
    Nowak, Lukasz J.
    Lankheet, Martin
    IEEE SENSORS JOURNAL, 2022, 22 (21) : 20855 - 20865
  • [27] Uncertainty of electrical impedance spectroscopy in bulk solids
    Bifano, Luca
    Fischerauer, Gerhard
    TM-TECHNISCHES MESSEN, 2022, 89 (s1) : 2 - 7
  • [28] Mouse Oocyte Characterization by Electrical Impedance Spectroscopy
    Cao, Yuan
    Floehr, Julia
    Azarkh, Danyil
    Schnakenberg, Uwe
    2022 IEEE SENSORS, 2022,
  • [29] Determination of pKa of dyes by electrical impedance spectroscopy
    de Oliveira, H. P.
    MICROCHEMICAL JOURNAL, 2008, 88 (01) : 32 - 37
  • [30] Design and development of a microfluidic platform with interdigitated electrodes for electrical impedance spectroscopy
    Miguel Barboza-Retana, Jose
    Vega-Sanchez, Cristopher
    Rojas, Juan J.
    Quiel-Hidalgo, Steven
    Madrigal-Gamboa, Sofia
    Vega-Castillo, Paola
    Rimolo-Donadio, Renato
    TECNOLOGIA EN MARCHA, 2022, 35 (01): : 54 - 66