A wavelet collocation method for the static analysis of sandwich plates using a layerwise theory

被引:66
作者
Castro, Luis M. S. [1 ]
Ferreira, A. J. M. [2 ]
Bertoluzza, Silvia [3 ]
Batra, R. C. [4 ]
Reddy, J. N. [5 ]
机构
[1] IST UTL, Dept Engn Civil & Arquitectura, P-1049001 Lisbon, Portugal
[2] Univ Porto, Fac Engn, Dept Engn Mecan, P-4200465 Oporto, Portugal
[3] CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy
[4] Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA
[5] Texas A&M Univ, Dept Mech Engn, College Stn, TX USA
关键词
Sandiwch plates; Collocation methods; Wavelets; Layerwise theory; Static analysis; SHEAR DEFORMATION-THEORY; VIBRATION ANALYSIS; MINDLIN PLATES; COMPOSITE; BEAMS; FORMULATION;
D O I
10.1016/j.compstruct.2010.01.021
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A study of bending deformations of sandwich plates using a layerwise theory of laminated or sandwich plates is presented. The analysis is based on a wavelet collocation technique to produce highly accurate results. Numerical results for symmetric laminated composite and sandwich plates are presented and discussed. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1786 / 1792
页数:7
相关论文
共 31 条
[1]   FINITE STRIP ANALYSIS OF ANISOTROPIC LAMINATED COMPOSITE PLATES USING HIGHER-ORDER SHEAR DEFORMATION-THEORY [J].
AKHRAS, G ;
CHEUNG, MS ;
LI, W .
COMPUTERS & STRUCTURES, 1994, 52 (03) :471-477
[2]   STATIC AND VIBRATION ANALYSIS OF ANISOTROPIC COMPOSITE LAMINATES BY FINITE STRIP METHOD [J].
AKHRAS, G ;
CHEUNG, MS ;
LI, W .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1993, 30 (22) :3129-3137
[3]  
Bathe K.-J., 2006, FINITE ELEMENT PROCE
[4]  
Bert C.W., 1996, Appl. mech. Rev, V49, P1, DOI [10.1115/1.3101882, DOI 10.1115/1.3101882]
[5]   A wavelet collocation method for the numerical solution of partial differential equations [J].
Bertoluzza, S ;
Naldi, G .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (01) :1-9
[6]  
Bertoluzza S, 2001, ADAPTIVE WAVELET COL
[7]  
CASTRO LMS, 2002, TECNICAS COLOCACAO B
[8]  
Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
[9]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[10]  
DESLAURIER G, 1989, CONSTR APPROX, V5