Comment on "Quantum discord through the generalized entropy in bipartite quantum states"

被引:4
作者
Bellomo, Guido [1 ]
Plastino, Angelo [1 ]
Majtey, Anna P. [2 ]
Plastino, Angel R. [3 ,4 ,5 ]
机构
[1] Univ Nacl La Plata, IFLP CCT CONICET, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ Fed Rio de Janeiro, Inst Fis, BR-21942972 Rio De Janeiro, Brazil
[3] Univ Nacl Noroeste Prov Buenos Aires UNNOBA, CeBio, Junin, Argentina
[4] Univ Nacl Noroeste Prov Buenos Aires UNNOBA, Secretaria Invest, Junin, Argentina
[5] Consejo Nacl Invest Cient & Tecn, Junin, Argentina
关键词
Quantum optics;
D O I
10.1140/epjd/e2014-50474-x
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In [X.-W. Hou, Z.-P. Huang, S. Chen, Eur. Phys. J. D 68, 1 (2014)], Hou et al. present, using Tsallis' entropy, possible generalizations of the quantum discord measure, finding original results. As for the mutual informations and discord, we show here that these two types of quantifiers can take negative values. In the two qubits instance we further determine in which regions they are non-negative. Additionally, we study alternative generalizations on the basis of Renyi entropies.
引用
收藏
页数:4
相关论文
共 22 条
[11]   Information theoretical properties of Tsallis entropies [J].
Furuichi, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (02)
[12]  
Gell-Mann M., 2004, Nonextensive Entropy-Interdisciplinary Applications
[13]   Quantum discord through the generalized entropy in bipartite quantum states [J].
Hou, Xi-Wen ;
Huang, Zhi-Peng ;
Chen, Su .
EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (04)
[14]  
Misra A., 2014, ARXIV14065065
[15]   On quantum Renyi entropies: A new generalization and some properties [J].
Mueller-Lennert, Martin ;
Dupuis, Frederic ;
Szehr, Oleg ;
Fehr, Serge ;
Tomamichel, Marco .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
[16]   Quantum discord: A measure of the quantumness of correlations [J].
Ollivier, H ;
Zurek, WH .
PHYSICAL REVIEW LETTERS, 2002, 88 (01) :4
[17]   PROPERTIES OF Q-ENTROPIES [J].
RAGGIO, GA .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (09) :4785-4791
[18]  
Renyi Alfred., 1960, 4th Berkeley Symposium on Mathematics, Statistics and Probability, V547, P547
[19]   A Fully Quantum Asymptotic Equipartition Property [J].
Tomamichel, Marco ;
Colbeck, Roger ;
Renner, Renato .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (12) :5840-5847
[20]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487