Asymptotics of best-packing on rectifiable sets

被引:20
作者
Borodachov, S. V. [1 ]
Hardin, D. P.
Saff, E. B.
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
best-packing points; sphere packing; rectifiable set; Thomson problem; packing measure; minimal discrete Riesz energy; hard spheres problem;
D O I
10.1090/S0002-9939-07-08975-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the asymptotic behavior, as N grows, of the largest minimal pairwise distance of N points restricted to an arbitrary compact rectifiable set embedded in Euclidean space, and we find the limit distribution of such optimal configurations. For this purpose, we compare best-packing configurations with minimal Riesz s-energy configurations and determine the s-th root asymptotic behavior (as s -> infinity) of the minimal energy constants. We show that the upper and the lower dimension of a set defined through the Riesz energy or best-packing coincides with the upper and lower Minkowski dimension, respectively. For certain sets in R-d of integer Hausdorff dimension, we show that the limiting behavior of the best-packing distance as well as the minimal s-energy for large s is different for different subsequences of the cardinalities of the configurations.
引用
收藏
页码:2369 / 2380
页数:12
相关论文
共 22 条
[1]  
ANDREEV NN, 1997, T MAT I STEKLOVA, V219, P27
[2]   Extremal dispositions of points on the sphere [J].
Kolushov A.V. ;
Yudin V.A. .
Analysis Mathematica, 1997, 23 (1) :25-34
[3]  
Boroczky K, 2004, Finite Packing and Covering
[4]  
BORODACHOV SV, IN PRESS T AM MATH S
[5]  
Conway J.H., 1999, GRUNDLEHREN MATH WIS, V290
[6]  
Federer H, 1969, Geometric measure theory
[7]  
Fejes Toth L., 1964, REGULAR FIGURES
[8]  
Graf S, 2000, LECT NOTES MATH, V1730, P1
[9]   Optimum quantization and its applications [J].
Gruber, PM .
ADVANCES IN MATHEMATICS, 2004, 186 (02) :456-497
[10]  
Habicht W., 1951, MATH ANN, V123, P223, DOI [10.1007/BF02054950, DOI 10.1007/BF02054950]