Fair pairwise learning to rank

被引:3
作者
Cerrato, Mattia [1 ]
Koeppel, Marius [2 ]
Segner, Alexander [2 ]
Esposito, Roberto [1 ]
Kramer, Stefan [2 ]
机构
[1] Univ Torino, Via Pessinetto 12, Turin, Italy
[2] Johannes Gutenberg Univ Mainz, Saarstr 21, Mainz, Germany
来源
2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020) | 2020年
关键词
fairness; neural networks; ranking; BIAS;
D O I
10.1109/DSAA49011.2020.00083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ranking algorithms based on Neural Networks have been a topic of recent research. Ranking is employed in everyday applications like product recommendations, search results, or even in finding good candidates for hiring. However, Neural Networks are mostly opaque tools, and it is hard to evaluate why a specific candidate, for instance, was not considered. Therefore, for neural-based ranking methods to be trustworthy, it is crucial to guarantee that the outcome is fair and that the decisions are not discriminating people according to sensitive attributes such as gender, sexual orientation, or ethnicity. In this work we present a family of fair pairwise learning to rank approaches based on Neural Networks, which are able to produce balanced outcomes for underprivileged groups and, at the same time, build fair representations of data, i.e. new vectors having no correlation with regard to a sensitive attribute. We compare our approaches to recent work dealing with fair ranking and evaluate them using both relevance and fairness metrics. Our results show that the introduced fair pairwise ranking methods compare favorably to other methods when considering the fairness/relevance trade-off.
引用
收藏
页码:729 / 738
页数:10
相关论文
共 44 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]  
Angwin Julia, 2016, MACHINE BIAS
[3]  
[Anonymous], 2017, NIPS
[4]  
[Anonymous], 2018, ARXIV PREPRINT ARXIV
[5]  
[Anonymous], 2018, ICALP
[6]  
[Anonymous], 2017, CIKM
[7]  
[Anonymous], 2007, ICML
[8]  
Ben-David S., 2006, ADV NEURAL INFORM PR
[9]  
Burges C.J, 2008, ADV NEURAL INFORM PR
[10]  
Burges C. J. C., 2005, P 22 INT C MACH LEAR, P89